Skip to main content
×
×
Home

Climate change challenges require collaborative research to drive agrifood system transformation

  • Gabrielle E. Roesch-McNally (a1), Andrea Basche (a2) and Rebecca Schewe (a3)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Climate change challenges require collaborative research to drive agrifood system transformation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Climate change challenges require collaborative research to drive agrifood system transformation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Climate change challenges require collaborative research to drive agrifood system transformation
      Available formats
      ×
Abstract
Copyright
Corresponding author
Author for correspondence: Gabrielle E. Roesch-McNally, E-mail: groeschmcnally@fs.fed.us
References
Hide All
Alvarez-Berrios, NL, Soto-Bayo, S, Holupchinski, E, Fain, SJ and Gould, WA (2018) Correlating drought conservation practices and drought vulnerability in a tropical agricultural system. Renewable Agriculture and Food Systems 33, 279291.
Bezner Kerr, R, Nyantakyi-Frimpong, H, Dakishoni, L, Lupafya, E, Shumba, L, Luginaah, I and Snapp, SS (2018) Knowledge politics in participatory climate change adaptation research on agroecology in Malawi. Renewable Agriculture and Food Systems 33, 238251.
Castellano, RS and Moroney, JL (2018) Farming adaptations in the face of climate change. Renewable Agriculture and Food Systems 33, 206211.
DeLonge, M and Basche, A (2017) Managing grazing lands to improve soils and promote climate change adaptation and mitigation: a global synthesis. Renewable Agriculture and Food Systems 33, 267278.
Franzen, S (2017) Framing nature: visual representations of ecological paradigms. Renewable Agriculture and Food Systems 33, 256258.
Heckelman, A, Smukler, S and Wittman, H (2018) Cultivating climate resilience: a participatory assessment of organic and conventional rice systems in the Philippines. Renewable Agriculture and Food Systems 33, 225237.
Jordan, N, Mulla, D, Slotterback, C, Runck, B and Hays, C (2017) Multifunctional agricultural watersheds for climate adaptation in Midwest USA: commentary. Renewable Agriculture and Food Systems 33, 292296.
Lane, D, Chatrchyan, A, Tobin, D, Thorn, K, Allred, S and Radhakrishna, R (2018) Climate change and agriculture in New York and Pennsylvania: risk perceptions, vulnerability and adaptation among farmers. Renewable Agriculture and Food Systems 33, 197205.
McGranahan, DA and Polling, BN (2018) Trait-based responses of seven annual crops to elevated CO2 and water limitation. Renewable Agriculture and Food Systems 33, 259266.
Niles, M, Ahuja, R, Barker, T, Esquivel, J, Gutterman, S, Heller, MC, Mango, N, Porter, D, Raimond, R, Tirado, C and Vermeulen, S (2018) Climate change mitigation beyond agriculture: a review of food system opportunities and implications. Renewable Agriculture and Food Systems 33, 297308.
Osterhoudt, S (2018) Remembered resilience: oral history narratives and community resilience in agroforestry systems. Renewable Agriculture and Food Systems 33, 252255.
Reyes, J, Wiener, J, Doan-Crider, D and Novak, R (2018). Building collaborative capacity: Supporting tribal agriculture and natural resources in a changing climate. Renewable Agriculture and Food Systems 33, 222224.
Schattman, RE, Roesch-McNally, GE, Wiener, S, Niles, MT and Hollinger, DY (2018) Farm service agency employee intentions to use weather and climate data in professional services. Renewable Agriculture and Food Systems 33, 212221.
Wuebbles, DJ, Fahey, DW, Hibbard, KA, DeAngelo, B, Doherty, S, Hayhoe, K, Horton, R, Kossin, JP, Taylor, PC, Waple, AM and Weaver, CP (2017) Executive summary. In Wuebbles, DJ, Fahey, DW, Hibbard, KA, Dokken, DJ, Stewart, BC and Maycock, TK (eds). Climate Science Special Report: Fourth National Climate Assessment, vol. I. Washington, DC: U.S. Global Change Research Program, pp. 1234. doi: 10.7930/J0DJ5CTG.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Renewable Agriculture and Food Systems
  • ISSN: 1742-1705
  • EISSN: 1742-1713
  • URL: /core/journals/renewable-agriculture-and-food-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed