Skip to main content Accessibility help

Farmer perceptions of sustainable agriculture practices and drought risk reduction in Nebraska, USA

  • C.L. Knutson (a1), T. Haigh (a1), M.J. Hayes (a1), M. Widhalm (a1), J. Nothwehr (a1), M. Kleinschmidt (a2) and L. Graf (a1)...


Social factors, such as farming methods, have an impact on farm vulnerability to drought, but have received little research or policy attention. Some researchers and advocates have argued that sustainable agriculture systems are less vulnerable to climate risk than conventional systems because sustainable agriculture requires producers to have skills promoting adaptability. In this paper, we investigate producers’ perceptions on the use of sustainable agriculture in reducing drought risk, and what they believe would help them better adapt to drought. We surveyed and interviewed farmer members of two sustainable agriculture organizations in Nebraska, USA, during a multi-year drought period from 1999 to 2007. Producers reported implementing a range of practices, such as organic soil building techniques, reduced tillage, targeted crop selection and diversification of crop and livestock production systems, to reduce their drought vulnerability. Although some practices were implemented specifically to reduce drought risk, producers felt that the practices they implemented as part of their normal operation were largely responsible for reducing their risk. Respondents held mixed views on the effects of insurance and farm programs on their drought management decisions. Finally, producers indicated that their ability to adapt to drought is limited by a number of barriers, especially a lack of capital and the need to respond to markets and maximize production to maintain cash flows.


Corresponding author

*Corresponding author:


Hide All
1National Climatic Data Center (NCDC). 2010. Billion Dollar US Weather Disasters. Available at Web site (accessed March 15, 2010).
2Hayes, M.J., Svoboda, M.D., Knutson, C.L. and Wilhite, D.A. 2004. Estimating the economic impacts of drought. In Proceedings of the 14th Conference on Applied Climatology, Seattle, WA, January 11–15, 2004. Available at Web site (accessed November 12, 2009).
3Wilhite, D. 1993. The enigma of drought. In Wilhite, D. (ed.). Drought Assessment, Management, and Planning: Theory and Case Studies. Kluwer Academic Publishers, Dordrecht, The Netherlands. p. 3–16.
4Liverman, D.M. 1999. Vulnerability and adaptation to drought in Mexico. Natural Resources Journal 39:99–116.
5Wilhem, O. and Wilhite, D. 2002. Assessing vulnerability to agricultural drought: a Nebraska case study. Natural Hazards 25:3758.
6Luersa, A.L., Lobella, D.B., Sklard, L.S., Addamsa, C.L., and Matsona, P.A. 2003. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change 13:255267.
7Wilhite, D.A. and Buchanan-Smith, M. 2005. Drought as hazard: understanding the natural and social context. In Wilhite, D.A. (ed.). Drought and Water Crises: Science, Technology, and Management Issues. CRC Press, Boca Raton, FL. p. 3–29.
8‘Definitions’ Title 7. U.S. Code. Section 3103.
9Wall, E. and Smit, B. 2005. Climate change adaptation in light of sustainable agriculture. Journal of Sustainable Agriculture 27:113123.
10Lotter, D.W., Seidel, R., and Liebhart, W. 2003. The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture 18:146154.
11Sahs, W.W. and Lesoing, G. 1985. Crop rotations and manure versus agricultural chemical in dryland grain production. Journal of Soil and Water Conservation 40:511516.
12Sullivan, P. 2002. Drought Resistant Soil. (IP169) Appropriate Technology Transfer for Rural Areas through the National Center for Appropriate Technology.
13Francis, C.A. and Clegg, M.D. 1990. Crop rotations in sustainable productions systems. In Edwards, C., Lal, R., Madden, P., Miller, R., and House, G. (eds). Sustainable Agriculture Systems. Soil and Water Conservation Society, Ankeny, IA. p. 107122.
14Zibilske, L. and Bradford, J. 2007. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage. Soil Science Society of America Journal 71:793802.
15Blevins, R.L., Lal, R., Doran, J.W., Langdale, G.W., and Frye, W.W. 1998. Conservation tillage for erosion control and soil quality. In Pierce, F.J. and Frye, W.W. (eds). Advances in Soil and Water Conservation. CRC Press, Boca Raton, FL. p. 5168.
16Unger, P.W., Sharpley, A.N., Steiner, J.L., Papendick, R.I., and Edwards, W.M. 1998. Soil management research for water conservation and quality. In Pierce, F.J. and Frye, W.W. (eds). Advances in Soil and Water Conservation. CRC Press, Boca Raton, FL. p. 6997.
17Brussaard, L., de Ruiter, P.C., and Brown, G.G. 2007. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment 121:233244.
18Altieri, M. 1999. The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment 74(1–3):1931.
19Jackson, L.E., Pascual, U., and Hodgkin, T. 2007. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agriculture, Ecosystems and Environment 121:196210.
20Di Falco, S. and Chavas, J. 2006. Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture. European Review of Agricultural Economics 33:289314.
21Di Falco, S. and Chavas, J. 2008. Rainfall shocks, resilience, and the effects of crop biodiversity on agroecosystem productivity. Land Economics 84:8396.
22Niggli, U., Earley, J. and Ogorzalek, K. 2007. Issues paper: Organic agriculture and environmental stability of the food supply. In Conference Proceedings. International Conference on Organic Agriculture and Food Security, Rome, Italy, May 3–5, 2007. Available at Web site (accessed November 2, 2009).
23Borron, S. 2006. Building Resilience for an Unpredictable Future: How Organic Agriculture Can Help Farmers Adapt to Climate Change. Food and Agriculture Organization of the United Nations Report.
24Smidt, B. and Skinner, M. 2002. Adaptation options in agriculture to climate change: a typology. Mitigation and Adaptation Strategies for Global Change 7:85–112.
25Bradshaw, B., Dolan, H., and Smit, B. 2004. Farm-level adaptation to climatic variability and change: crop diversification in the Canadian Prairies. Climatic Change 67:119141.
26Hanson, J., Dismukes, R., Chambers, W., Greene, C., and Kremen, A. 2004. Risk and risk management in organic agriculture: views of organic farmers. Renewable Agriculture and Food Systems 19:218227.
27Nebraska Sustainable Agriculture Society (NSAS). 2010. About Us. Available at Web site (accessed September 27, 2010).
28Organic Crop Improvement Society International (OCIA). 2009. Facts about Organic Agriculture. Available at Web site (accessed September 27, 2010).
29Bernard, H.R. 1994. Research Methods in Anthropology: Qualitative and Quantitative Approaches, 2nd ed.Sage Publications, Thousand Oaks, CA.
30King, N. and Horrocks, C. 2010. Interviews in Qualitative Research. Sage Publications, Thousand Oaks, CA.
31United State Department of Agriculture (USDA) Economic Research Service. 2009. State Fact Sheets: Nebraska. Available at Web site (accessed November 15, 2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Renewable Agriculture and Food Systems
  • ISSN: 1742-1705
  • EISSN: 1742-1713
  • URL: /core/journals/renewable-agriculture-and-food-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed