Skip to main content
×
×
Home

Farm service agency employee intentions to use weather and climate data in professional services

  • Rachel E. Schattman (a1), Gabrielle Roesch-McNally (a2), Sarah Wiener (a3), Meredith T. Niles (a4) and David Y. Hollinger (a5)...
Abstract

Agricultural service providers often work closely with producers, and are well positioned to include weather and climate change information in the services they provide. By doing so, they can help producers reduce risks due to climate variability and change. A national survey of United States Department of Agriculture Farm Service Agency (FSA) field staff (n = 4621) was conducted in 2016. The survey was designed to assess FSA employees’ use of climate and weather-related data and explore their perspectives on climate change, attitudes toward adaptation and concerns regarding climate- and weather-driven risks. Two structural equation models were developed to explore relationships between these factors, and to predict respondents’ willingness to integrate climate and weather data into their professional services in the future. The two models were compared with assess the relative influence of respondents’ current use of weather and climate information. Findings suggest that respondents’ perceptions of weather-related risk in combination with their personal observations of weather variability help predict whether an individual intends to use weather and climate information in the future. Importantly, climate change belief is not a significant predictor of this intention; however, the belief that producers will have to adapt to climate change in order to remain viable is. Surprisingly, whether or not an individual currently uses weather and climate information is not a good predictor of whether they intend to in the future. This suggests that there are opportunities to increase employee exposure and proficiency with weather and climate information to meet the needs of American farmers by helping them to reduce risk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Farm service agency employee intentions to use weather and climate data in professional services
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Farm service agency employee intentions to use weather and climate data in professional services
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Farm service agency employee intentions to use weather and climate data in professional services
      Available formats
      ×
Copyright
This is a work of the U.S. Government and is not subject to copyright protection in the United States. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Author for correspondence: Rachel E. Schattman, E-mail: rschattm@uvm.edu
References
Hide All
Ajzen, I (1991) The theory of planned behavior. Organizational Behavior and Human Decision Processes 50(2), 179211. doi: 10.1016/0749-5978(91)90020-T.
Akerlof, K, Maibach, EW, Fitzgerald, D, Cedeno, AY and Neuman, A (2013) Do people “personally experience” global warming, and if so how, and does it matter? Global Environmental Change 23(1), 8191. doi: 10.1016/j.gloenvcha.2012.07.006.
Arbuckle, JG, Haigh, T, Hobbs, J and Knoot, T (2013a) Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States. Drought Mitigation Center Faculty Publications 11, 113.
Arbuckle, JG, Morton, LW and Hobbs, J (2013b) Farmer beliefs and concerns about climate change and attitudes toward adaptation and mitigation: evidence from Iowa. Climatic Change, 118(3–4), 551563. doi: 10.1007/s10584-013-0700-0.
Arbuckle, JG, Hobbs, J, Loy, A, Morton, LW, Prokopy, LS and Tyndall, J (2014) Understanding corn belt farmer perspectives on climate change to inform engagement strategies for adaptation and mitigation. Journal of Soil and Water Conservation 69(6), 505516. doi: 10.2489/jswc.69.6.505.
Arbuckle, JG, Morton, LW and Hobbs, J (2015) Understanding farmer perspectives on climate change adaptation and mitigation: the roles of trust in sources of climate information, climate change beliefs, and perceived risk. Environment and Behavior 47(2), 205234. doi: 10.1177/0013916513503832.
Bayard, B and Jolly, C (2007) Environmental behavior structure and socio-economic conditions of hillside farmers: a multiple-group structural equation modeling approach. Ecological Economics 62, 433440. doi: 10.1016/j.ecolecon.2006.07.004.
Beedell, J and Rehman, T (2000) Using social-psychology models to understand farmers’ conservation behaviour. Journal of Rural Studies 16, 117127.
Campbell, A and Tomlinson, P (2016) Climate change challenges for extension educators: technical capacity and cultural attitudes. Journal of Extension 54(6), 114.
Carlton, JS, Mase, AS, Knutson, CL, Lemos, MC, Haigh, T, Todey, DP and Prokopy, LS (2016) The effects of extreme drought on climate change beliefs, risk perceptions, and adaptation attitudes. Climatic Change 135(2), 211226. doi: 10.1007/s10584-015-1561-5.
Carr, A and Wilkinson, R (2005) Beyond participation: boundary organizations as a new space for farmers and scientists to interact. Society and Natural Resources 18(3), 255265. doi: 10.1080/08941920590908123.
Chatrchyan, AM, Erlebacher, RC, Chaopricha, NT, Chan, J, Tobin, D and Allred, SB (2017) United States agricultural stakeholder views and decisions on climate change. Wiley Interdisciplinary Reviews: Climate Change 8(5), 121. doi: 10.1002/wcc.469.
Clark, LA and Watson, D (1995) Constructing validity: basic issues in objective scale development. Psychological Assessment 7(3), 309319.
Cook, J, Oreskes, N, Doran, PT, Anderegg, WRL, Verheggen, B, Maibach, EW, Carlton, JS, Lewandowsky, S, Skuce, AG, Green, SA, Nuccitelli, D, Jacobs, P, Richardson, M, Winkler, B, Painting, R and Rice, K (2016) Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental Research Letters, IOP Publishing 11(4), 48002. doi: 10.1088/1748-9326/11/4/048002.
Dillman, DA, Smyth, JD and Christian, LM (2008) Internet, Mail, and Mixed-mode Surveys: The Tailored Design Method, 2nd edn. Hoboken, NJ: John Wiley & Sons, Ltd. doi: 10.2307/41061275.
Enders, CK and Bandalos, DL (2001) The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling: A Multisdisciplinary Journal 8(3), 430457. doi: 10.1207/S15328007SEM0803.
Fishbein, M and Ajzen, I (2010) Predicting and Changing Behavior: The Reasoned Action Approach. New York: Taylor and Francis.
Fraisse, CW, Breuer, NE, Zierden, D and Ingram, KT (2009) From climate variability to climate change: challenges and opportunities to extension. Journal of Extension 47(2), 110. doi: 10.1088/1755-1307/6/4/242015.
Guston, D (1999) Stabilizing the boundary between U.S. politics and science. Social Studies of Science 29(1), 87111. doi: 10.1177/030631299029001004.
Haden, VR, Niles, MT, Lubell, M, Perlman, J and Jackson, LE (2012) Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change? PLoS ONE 7(12), 17. doi: 10.1371/journal.pone.0052882.
Haigh, T, Morton, LW, Lemos, MC, Knutson, C, Prokopy, LS, Lo, YJ and Angel, J (2015) Agricultural advisors as climate information intermediaries: exploring differences in capacity to communicate climate. Weather, Climate, and Society 7(1), 8393. doi: 10.1175/WCAS-D-14-00015.1.
Hansen, J, Marx, S and Weber, E (2004) The role of climate perceptions, expectations, and forecasts in farmer decision making: the Argentine Pampas and South Florida. International Research Institute for Climate Predictions Technical Report, pp. 1142.
Hayman, P, Crean, J, Mullen, J and Parton, K (2007) How do probabilistic seasonal climate forecasts compare with other innovations that Australian farmers are encouraged to adopt? Australian Journal of Agricultural Research, 58, 975984.
Hornsey, MJ, Fielding, KS, Mcstay, R, Reser, JP and Bradley, GL (2016) Are people high in skepticism about anthropogenic climate change necessarily resistant to influence? Some cause for optimism. Environment and Behavior 48(7), 905928. doi: 10.1177/0013916515574085.
Howden, SM, Soussana, J, Tubiello, FN, Chhetri, N, Dunlop, M, Meinke, H, Howden, SM, Soussana, J, Tubiello, FN, Chhetrill, N and Dunlop, M (2007) Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 104(50), 1969119696. doi: 10.1073/pnas.0701890104.
Howe, PD, Mildenberger, M, Marlon, JR and Leiserowitz, A (2015) Geographic variation in opinions on climate change at state and local scales in the USA. Nature Climate Change 5, 596603. doi: 10.1038/nclimate2583.
Hu, Q, Zillig, LMP, Lynne, GD, Tomkins, AJ, Waltman, WJ, Hayes, MJ, Hubbard, KG, Artikov, I, Hoffmann, SJ and Wilhite, DA (2006) Understanding farmer's forecast use from their beliefs, values, social norms, and perceived obstacles. Journal of Applied Meteorology and Climatology 45(9), 11901201. doi: 10.1175/JAM2414.1.
Hyland, JJ, Jones, DL, Parkhill, KA, Barnes, AP and Williams, AP (2015) Farmers’ perceptions of climate change: identifying types. Agriculture and Human Values, Springer Netherlands 33(2), 323339. doi: 10.1007/s10460-015-9608-9.
Jasanoff, S (1996) Beyond epistemology: relativism and engagement in the politics of science. Social Studies of Science 26(2), 393418. doi: 10.1177/030631296026002008.
Kahan, D (2015) Climate-science communication and the measurement problem. Political Psychology 36(S1), 143. doi: 10.1111/pops.12244.
Lemos, MC, Kirchhoff, CJ, Kalafatis, SE, Scavia, D and Rood, RB (2014a) Moving climate information off the shelf: boundary chains and the role of RISAs as adaptive organizations. Weather, Climate, and Society 6(2), 273285. doi: 10.1175/WCAS-D-13-000441.
Lemos, MC, Lo, YJ, Kirchhoff, C and Haigh, T (2014b) Crop advisors as climate information brokers: building the capacity of us farmers to adapt to climate change. Climate Risk Management 4, 3242. doi: 10.1016/j.crm.2014.08.001.
Marlon, J, Howe, P, Mildenberger, M and Leiserwitz, A (2016) Yale Climate Opinion Maps, U.S. 2016. New Haven CT: Yale Program on Climate Change Communication.
Mase, AS and Prokopy, LS (2014) Unrealized potential: a review of perceptions and use of weather and climate information in agricultural decision making. Weather, Climate, and Society 6(1), 4761. doi: 10.1175/WCAS-D-12-00062.1.
Mase, AS, Cho, H and Prokopy, LS (2015) Enhancing the social amplification of risk framework (SARF) by exploring trust, the availability heuristic, and agricultural advisors’ belief in climate change. Journal of Environmental Psychology 41, 166176. doi: 10.1016/j.jenvp.2014.12.004.
Mase, AS, Gramig, BM and Prokopy, LS (2016) Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management, The Authors 15, 817. doi: http://dx.doi.org/10.1016/j.crm.2016.11.004.
Menapace, L, Colson, G and Raffaelli, R (2015) Climate change beliefs and perceptions of agricultural risks: an application of the exchangeability method. Global Environmental Change, Elsevier Ltd 35, 7081. doi: 10.1016/j.gloenvcha.2015.07.005.
Myers, TA, Maibach, EW, Roser-Renouf, C, Akerlof, K and Leiserowitz, AA (2013) The relationship between personal experience and belief in the reality of global warming. Nature Climate Change, Nature Publishing Group 3(4), 343347. doi: 10.1038/nclimate1754.
Niles, MT and Mueller, ND (2016) Farmer perceptions of climate change: associations with observed temperature and precipitation trends, irrigation, and climate beliefs. Global Environmental Change, Elsevier Ltd 39, 133142. doi: 10.1016/j.gloenvcha.2016.05.002.
Niles, MT, Lubell, M and Haden, VR (2013) Perceptions and responses to climate policy risks among California farmers. Global Environmental Change, Elsevier Ltd 23(6), 17521760. doi: 10.1016/j.gloenvcha.2013.08.005.
Niles, MT, Dynes, R and Brown, M (2016) Farmer's intended and actual adoption of climate change mitigation and adaptation strategies. Climatic Change, 135, 277295. doi: 10.1007/s10584-015-1558-0.
Noble, IR, Huq, S, Anokhin, YA, Carmin, J, Goudou, D, Lansigan, FP, Osman-Elasha, B and Villamizar, A (2014) Climate change 2014: impacts, adaptation, and vulnerability. In Field, CB, Barros, VR, Dokken, DJ, Mach, KJ, Mastrandrea, MD, Bilir, TE, Chatterjee, M, Ebi, KL, Estrada, YO, Genova, RC, Girma, B, Kissel, ES, Levy, AN, MacCracken, S, Mastrandrea, PR and White, LL (eds) Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, pp. 833868. Available at http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap14_FINAL.pdf.
Nunnally, JC (1978) Pscyhometric Theory, 2nd edn. New York: McGraw-Hill.
O'Conner, RE, Bord, RJ and Fischer, A (1999) Risk perceptions, general environmental beliefs and willingness to address climate change. Risk Analysis 19(3), 461471.
Osborne, JW and Costello, AB (2005) Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment, Research and Evaluation 10(7), 19. Available at http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Best+Practices+in+Exploratory+FActor+Analysis:+Four+Recommendations+For+Getting+the+Most+FRom+Your+Analysis#2%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Best+practices+in+.
Phillips, AW, Reddy, S and Durning, SJ (2016) Improving response rates and evaluating nonresponse bias in surveys: AMEE Guide No. 102. Medical Teacher 38(3), 217228. doi: 10.3109/0142159X.2015.1105945.
Poortinga, W, Spence, A, Whitmarsh, L, Capstick, S and Pidgeon, NF (2011) Uncertain climate: an investigation into public scepticism about anthropogenic climate change. Global Environmental Change, Elsevier Ltd 21(3), 10151024. doi: 10.1016/j.gloenvcha.2011.03.001.
Prokopy, LS, Haigh, T, Mase, AS, Angel, J, Hart, C, Knutson, C, Lemos, MC, Lo, Y-J, McGuire, J, Morton, LW, Perron, J, Todey, D and Widhalm, M (2013) Agricultural advisors: a receptive audience for weather and climate information? Weather, Climate, and Society 5(2), 162167. doi: 10.1175/WCAS-D-12-00036.1.
Prokopy, LS, Arbuckle, JG, Barnes, AP, Haden, VR, Hogan, A, Niles, MT and Tyndall, J (2015a) Farmers and climate change: a cross-national comparison of beliefs and risk perceptions in high-income countries. Environmental Management, Springer US 56, 492504. doi: 10.1007/s00267-015-0504-2.
Prokopy, LS, Carlton, JS, Arbuckle, JG, Haigh, T, Lemos, MC, Mase, AS, Babin, N, Dunn, M, Andresen, J, Angel, J, Hart, C and Power, R (2015b) Extension's role in disseminating information about climate change to agricultural stakeholders in the United States. Climatic Change 130(2), 261272. doi: 10.1007/s10584-015-1339-9.
Prokopy, LS, Carlton, JS, Haigh, T, Lemos, MC, Mase, AS and Widhalm, M (2017) Useful to usable: developing usable climate science for agriculture. Climate Risk Management. doi: 10.1016/j.crm.2016.10.004.
Raymond, CM and Robinson, GM (2013) Factors affecting rural landholders’ adaptation to climate change: insights from formal institutions and communities of practice. Global Environmental Change, Elsevier Ltd 23(1), 103114. doi: 10.1016/j.gloenvcha.2012.11.004.
Roesch-McNally, G, Arbuckle, JG and Tyndall, JC (2017) What would farmers do? Adaptation intentions under a Corn Belt climate change scenario. Agriculture and Human Values 32(2), 333346.
Running, K, Burke, J and Shipley, K (2017) Perceptions of environmental change and climate concern among Idaho's farmers. Society & Natural Resources, Taylor & Francis 30(6), 659673. doi: 10.1080/08941920.2016.1239151.
Saad, L (2015) U.S. views on climate change stable after extreme winter, Gallup Poll Social Series: Environment. Available at http://www.gallup.com/poll/182150/views-climate-change-stable-extreme-winter.aspx.
Saad, L and Jones, J (2016) U.S. Concern About Global Warming at Eight-Year High. Available at Gallup.com (Accessed June 30 2017).
Scannell, L and Gifford, R (2013) Personally relevant climate change: the role of place attachment and local versus global message framing in engagement. Environment and Behavior 45(1), 6085. doi: 10.1177/0013916511421196.
Schattman, RE, Mendez, VE, Merrill, SC and Zia, A (2017) A mixed methods approach to understanding farmer and agricultural advisor perceptions of climate change and adaptation in Vermont, United States. Agroecology and Sustainable Food Systems 24(2), 121148. doi: 10.1080/21683565.2017.1357667.
Smit, B, Burton, I, Klein, RJT and Wang, J (2000) An anatomy of adaptation to climate change and variability. Climate Change 45(1), 223251. doi: 10.1023/A:1005661622966.
Spence, A, Poortinga, W, Butler, C and Pidgeon, NF (2011) Perceptions of climate change and willingness to save energy related to flood experience. Nature Climate Change, Nature Publishing Group 1(4), 4649. doi: 10.1038/nclimate1059.
Takahashi, B, Terracina-hartman, MBC, Sopchak, AR and Selfa, T (2016) Climate change perceptions of NY state farmers: the role of risk perceptions and adaptive capacity. Environmental Management, Springer US 58, 946957. doi: 10.1007/s00267-016-0742-y.
Tucker, M and Napier, TL (2002) Preferred sources and channels of soil and water conservation information among farmers in three midwestern US watersheds. Agriculture, Ecosystems & Environment 92, 297313.
USDA-FSA (2017a) Farm Service Agency mission and values, History and Mission. Available at https://www.fsa.usda.gov/about-fsa/history-and-mission/index (Accessed 1 January 2017).
USDA-FSA (2017b) USDA-FSA Organization and Structure. Available at https://www.fsa.usda.gov/about-fsa/structure-and-organization/index (Accessed 1 January 2017).
van der Linden, S (2014) On the relationship between personal experience, affect and risk perception: the case of climate change. European Journal of Social Psychology 44(5), 430440. doi: 10.1002/ejsp.2008.
van der Linden, SL, Leiserowitz, AA, Feinberg, GD and Maibach, EW (2015) The scientific consensus on climate change as a gateway belief: experimental evidence. PLoS ONE 10(2), 18. doi: 10.1371/journal.pone.0118489.
Whitmarsh, L (2008) Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response. Journal of Risk Research 11(3), 351374. doi: 10.1080/13669870701552235.
Zahran, S, Brody, SD, Grover, H, Vedlitz, A, Zahran, S, Brody, SD, Grover, H, Vedlitz, A, Brody, SD and Grover, H (2006) Climate change vulnerability and policy support. Society & Natural Resources 19(9), 771789. doi: 10.1080/08941920600835528.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Renewable Agriculture and Food Systems
  • ISSN: 1742-1705
  • EISSN: 1742-1713
  • URL: /core/journals/renewable-agriculture-and-food-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Schattman et al. supplementary material
Table S4

 Word (13 KB)
13 KB
WORD
Supplementary materials

Schattman et al. supplementary material
Table S3

 Word (13 KB)
13 KB
WORD
Supplementary materials

Schattman et al. supplementary material
Table S2

 Word (13 KB)
13 KB
WORD
Supplementary materials

Schattman et al. supplementary material
Table S1

 Word (13 KB)
13 KB
WORD
Supplementary materials

Schattman et al. supplementary material
Figure S1

 Word (89 KB)
89 KB
WORD
Supplementary materials

Schattman et al. supplementary material
Table S5

 Word (14 KB)
14 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed