Skip to main content Accessibility help

Mental models of organic weed management: Comparison of New England US farmer and expert models

  • Randa Jabbour (a1), Sarah Zwickle (a2), Eric R. Gallandt (a1), Katherine E. McPhee (a1), Robyn S. Wilson (a2) and Doug Doohan (a3)...


Weeds are a major challenge for organic farmers, yet we know little about the factors influencing organic farmers’ weed management decisions. We hypothesized that farmers and scientist ‘experts’ differ in fundamental areas of knowledge and perceptions regarding weeds and weed management. Moreover, these differences prevent effective communication, outreach programming and research prioritization. An expert mental model, constructed primarily from interviews with research scientists and extension professionals, revealed expert emphasis on knowledge of ecological weed management as crucial for successfully implementing such strategies. We interviewed 23 organic farmers in northern New England, yielding an aggregate farmer mental model to compare with the expert model. Farmers demonstrated knowledge of the major concepts discussed by experts, but differed in emphasis. Farmers placed less emphasis on ecological complexity than experts. One-third of farmers interviewed discussed the potential role of weeds as indicators of soil nutrient status, a concept of which experts were skeptical. Farmer beliefs about the weed seedbank highlighted potential misconceptions regarding seed persistence, with one-fourth of farmers focusing on the concept that seeds can live for an exceptionally long time in the soil, while experts focused on the concept of the seed half-life. Farmers emphasized the role of experience, both their own and that of other farmers, rather than knowledge derived from scientific research. Farmers considered yield and the cost of time and labor as equally at risk because of weeds, whereas experts predominantly discussed yield loss. During discussions of management, both farmers and experts most emphasized risks associated with cultivation and benefits associated with cover cropping. These results have prompted us, first, to develop new educational materials focused on weed seed longevity and management of the weed seedbank, and, second, to conduct regional focus groups with farmers who prioritize fertility management in their efforts to control weeds, especially manipulations of soil calcium and magnesium.


Corresponding author

* Corresponding author:


Hide All
1 OFRF. 1998. Third Biennial National Organic Farmer's Survey. Organic Farming Research Foundation, Santa Cruz, CA.
2 Riemens, M.M., Groeneveld, R.M.W., Kropff, M.J.J., Lotz, L.P., Renes, R.J., Sukkel, W., and van der Weide, R.Y. 2010. Linking farmer weed management behavior with weed pressure: More than just technology. Weed Science 58:490496.
3 Dedecker, J. 2012. Weed management practice selection among Midwest U.S. organic growers. MS thesis, University of Illinois at Urbana-Champaign, Urbana, IL, p. 146.
4 Riemens, M.M., Groeneveld, R.M.W., Lotz, L.P., and Kropff, M.J. 2007. Effects of three management strategies on the seedbank, emergence and the need for hand weeding in an organic arable cropping system. Weed Research 47:442451.
5 Hawes, C., Squire, G.R., Hallett, P.D., Watson, C.A., and Young, M. 2010. Arable plant communities as indicators of farming practice. Agriculture, Ecosystems and Environment 138:1726.
6 Nowak, P.J. and Cabot, P.E. 2004. Human dimension of resource management programs. Journal of Soil and Water Conservation 59:128135.
7 Doohan, D., Wilson, R., Canales, E., and Parker, J. 2010. Investigating the human dimension of weed management: New tools of the trade. Weed Science 58:503510.
8 Turner, R.J., Davies, G., Moore, H., Grundy, A.C., and Mead, A. 2007. Organic weed management: A review of the current UK farmer perspective. Crop Protection 26:377382.
9 Zwickle, S. 2011. Weeds and organic weed management: Investigating farmer decisions with a mental models approach. MS thesis, Ohio State University, Columbus, OH, p. 171.
10 Eckert, E. and Bell, A. 2005. Invisible force: Farmers’ mental models and how they influence learning and actions. Journal of Extension [Online] 43. Available at Web site (accessed June 12, 2013).
11 Eckert, E. and Bell, A. 2006. Continuity and change: Themes of mental model development among small-scale farmers. Journal of Extension [Online] 44. Available at Web site (accessed June 12, 2013).
12 Macé, K., Morlon, P., Munier-Jolain, N., and Quéré, L. 2007. Time scales as a factor in decision-making by French farmers on weed management in annual crops. Agricultural Systems 93:115142.
13 Morgan, M.G., Fischhoff, B., Bostrom, A., and Atman, C.J. 2002. Risk Communication: A Mental Models Approach. Cambridge University Press, Cambridge, UK.
14 Wilson, R.S., Tucker, M.A., Hooker, N.H., LeJeune, J.T., and Doohan, D. 2008. Perceptions and beliefs about weed management: Perspectives of Ohio grain and produce farmers. Weed Technology 22:339350.
15 Wilson, R.S., Hooker, N., Tucker, M., LeJeune, J., and Doohan, D. 2009. Targeting the farmer decision making process: A pathway to increased adoption of integrated weed management. Crop Protection 28:756764.
16 Parker, J.S., Wilson, R.S., LeJeune, J.T., and Doohan, D. 2012. Including growers in the ‘food safety’ conversation: Enhancing the design and implementation of food safety programming based on farm and marketing needs of fresh fruit and vegetable producers. Agriculture and Human Values 29:303319.
17 Ajzen, I. 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes 50:179211.
18 Plous, S. 1993. The Psychology of Judgment and Decision Making. McGraw Hill, Columbus, OH.
19 Damasio, A. 1994. Descartes’ Error: Emotion, Reason, and the Human Brain. Cambridge University Press, New York, NY.
20 Corselius, K.L., Simmons, S.R., and Flora, C.B. 2003. Farmer perspectives on cropping systems diversification in northwestern Minnesota. Agriculture and Human Values 20:371383.
21 Sjöberg, L. 2000. Factors in risk perception. Risk Analysis 20:111.
22 Siegrist, M. 1999. A causal model explaining the perception and acceptance of gene technology. Journal of Applied Social Psychology 29:20932106.
23 Siegrist, M., Cvetkovich, G., and Roth, C. 2000. Salient value similarity, social trust, and risk/benefit perception. Risk Analysis 20:353362.
24 MAXQDA, Software for Qualitative Data Analysis. 1989–2013. VERBI Software—Consult—Sozialforschung GmbH, Berlin, DE.
25 Corbin, J. and Strauss, A. 2008. Basics of Qualitative Research. Sage Publications, Los Angeles, CA.
26 Glesne, C. and Peshkin, A. 1992. Becoming Qualitative Researchers: An Introduction. Longman, White Plains, NY.
27 Charmaz, K. 2009. Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis. Sage Publications, Los Angeles, CA.
28 Gallandt, E.R. 2006. How can we target the weed seedbank? Weed Science 54:588596.
29 Liebman, M. and Gallandt, E.R. 1997. Many little hammers: Ecological management of crop-weed interactions. In Jackson, L.E. (ed.). Ecology in Agriculture. Academic Press, San Diego, CA. p. 291343.
30 Tilman, E.A., Tilman, D., Crawley, M.J., and Johnston, A.E. 1999. Biological weed control via nutrient competition: Potassium limitation of dandelions. Ecological Applications 9:103111.
31 Frederick, S. and Loewenstein, G. 2002. Time discounting and time preference: A critical review. Journal of Economic Literature 40:351401.
32 Roschewitz, I., Gabriel, D., Tscharntke, T., and Thies, C. 2005. The effects of landscape complexity on arable weed species diversity in organic and conventional farming. Journal of Applied Ecology 42:873882.
33 José-María, L. and Sans, F.X. 2011. Weed seedbanks in arable fields: Effects of management practices and surrounding landscape. Weed Research 51:631640.
34 Bàrberi, P., Burgio, G., Dinelli, G., Moonen, A.C., Otto, S., Vazzana, C., and Zamin, G. 2010. Functional biodiversity in the agricultural landscape: Relationships between weeds and arthropod fauna. Weed Research 50:388401.
35 Evans, D.M., Pocock, M.J.O., Brooks, J., and Memmott, J. 2011. Seeds in farmland food-webs: Resource importance, distribution and the impacts of farm management. Biological Conservation 144:29412950.
36 Mt. Pleasant, J. and Schlather, K.J. 1994. Incidence of weed seed in cow (Bos sp.) manure and its importance as a weed source for cropland. Weed Science 8:304310.
37 Davis, A., Renner, K., Sprague, C., Dyer, L., and Mutch, D. 2005. Integrated Weed Management: ‘One Year's Seeding…’. Michigan State University Extension, East Lansing, MI.
38 Mohler, C.L. and Johnson, S.E. 2009. Crop Rotation on Organic Farms: A Planning Manual. Natural Resource, Agriculture, and Engineering Service, Ithaca, NY.
39 Pfeiffer, E.E. 2008. Weeds and What They Tell. Biodynamic Farming & Gardening Association, Oaks, PA.
40 Walters, C. 1999. Weeds: Control Without Poisons. Acres U.S.A., Austin, TX.
41 Di Tomaso, J.M. 1995. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Science 43:491497.
42 Kopittke, P.M. and Menzies, N.W. 2007. A review of the use of the basic cation saturation ratio and the ‘ideal’ soil. Soil Science Society of America Journal 71:259265.
43 Schonbeck, M. 2000. Balancing soil nutrients in organic vegetable production systems: Testing Albrecht's base saturation theory in southeastern soils. Organic Farming Research Foundation Information Bulletin 10:17.
44 Kelling, K.A., Schulte, E.E., and Peters, J.B. 1996. One hundred years of Ca: Mg ratio research. New Horizons in Soil Science Series 8. Department of Soil Science, University of Wisconsin-Madison, Madison, WI.
45 Warwick, S.L. and Sweet, R.D. 1983. The biology of Canadian weeds. 58. Galinsoga parviflora and G. quadriradiata (=G. ciliata). Canadian Journal of Plant Science 63:695709.
46 Ullrich, S.D., Buyer, J.S., Cavigelli, M.A., Seidel, R., and Teasdale, J.R. 2011. Weed seed persistence and microbial abundance in long-term organic and conventional cropping systems. Weed Science 59:202209.
47 Smith, R.G., Gareau, T.P., Mortensen, D.A., Curran, W.S., and Barbercheck, M.E. 2011. Assessing and visualizing agricultural management practices: A multivariable hands-on approach for education and extension. Weed Technology 25:680687.
48 Gallagher, R.S., Luschei, E.C., Gallandt, E.R., and DiTommaso, A. 2007. Experiential learning activities in the weed science classroom. Weed Technology 25:680687.
49 Gareau, T.P., Smith, R.G., Barbercheck, M.E., and Mortensen, D.A. 2010. Spider plots: A tool for participatory extension learning. Journal of Extension [Online] 48. Available at Web site (accessed June 12, 2013).
50 Mirsky, S.B., Gallandt, E.R., Mortensen, D.A., Curran, W.S., and Shumway, D.L. 2010. Reducing the germinable weed seedbank with soil disturbance and cover crops. Weed Research 50:341352.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Renewable Agriculture and Food Systems
  • ISSN: 1742-1705
  • EISSN: 1742-1713
  • URL: /core/journals/renewable-agriculture-and-food-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Jabbour Supplementary Materials

 Word (36 KB)
36 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed