Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T03:07:10.524Z Has data issue: false hasContentIssue false

THE ZHOU ORDINAL OF LABELLED MARKOV PROCESSES OVER SEPARABLE SPACES

Published online by Cambridge University Press:  27 February 2023

MARTÍN SANTIAGO MORONI
Affiliation:
FACULTAD DE MATEMÁTICA, ASTRONOMÍA, FÍSICA Y COMPUTACIÓN UNIVERSIDAD NACIONAL DE CÓRDOBA CÓRDOBA, ARGENTINA and CENTRO DE INVESTIGACIÓN Y ESTUDIOS DE MATEMÁTICA (CIEM-FAMAF) CONICET, CÓRDOBA, ARGENTINA E-mail: moroni@famaf.unc.edu.ar URL: https://cs.famaf.unc.edu.ar/~pedro/
PEDRO SÁNCHEZ TERRAF*
Affiliation:
FACULTAD DE MATEMÁTICA, ASTRONOMÍA, FÍSICA Y COMPUTACIÓN UNIVERSIDAD NACIONAL DE CÓRDOBA CÓRDOBA, ARGENTINA and CENTRO DE INVESTIGACIÓN Y ESTUDIOS DE MATEMÁTICA (CIEM-FAMAF) CONICET, CÓRDOBA, ARGENTINA E-mail: moroni@famaf.unc.edu.ar URL: https://cs.famaf.unc.edu.ar/~pedro/

Abstract

There exist two notions of equivalence of behavior between states of a Labelled Markov Process (LMP): state bisimilarity and event bisimilarity. The first one can be considered as an appropriate generalization to continuous spaces of Larsen and Skou’s probabilistic bisimilarity, whereas the second one is characterized by a natural logic. C. Zhou expressed state bisimilarity as the greatest fixed point of an operator $\mathcal {O}$, and thus introduced an ordinal measure of the discrepancy between it and event bisimilarity. We call this ordinal the Zhou ordinal of $\mathbb {S}$, $\mathfrak {Z}(\mathbb {S})$. When $\mathfrak {Z}(\mathbb {S})=0$, $\mathbb {S}$ satisfies the Hennessy–Milner property. The second author proved the existence of an LMP $\mathbb {S}$ with $\mathfrak {Z}(\mathbb {S}) \geq 1$ and Zhou showed that there are LMPs having an infinite Zhou ordinal. In this paper we show that there are LMPs $\mathbb {S}$ over separable metrizable spaces having arbitrary large countable $\mathfrak {Z}(\mathbb {S})$ and that it is consistent with the axioms of $\mathit {ZFC}$ that there is such a process with an uncountable Zhou ordinal.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Billingsley, P. (1995). Probability and Measure. New York: Wiley-Interscience.Google Scholar
Danos, V., Desharnais, J., Laviolette, F., & Panangaden, P.. (2006). Bisimulation and cocongruence for probabilistic systems. Information and Computation, 204, 503523.Google Scholar
Desharnais, J. (1999). Labelled Markov Processes. Ph.D. Thesis, McGill University.Google Scholar
Desharnais, J., Edalat, A., & Panangaden, P. (2002). Bisimulation for labelled Markov processes. Information and Computation, 179(2), 163193.Google Scholar
Doberkat, E.-E. (2005). Semi-pullbacks for stochastic relations over analytic spaces. Mathematical Structures in Computer Science, 15(4), 647670.Google Scholar
Edalat, A. (1999). Semi-pullbacks and bisimulation in categories of Markov processes. Mathematical Structures in Computer Science, 9(5), 523543.Google Scholar
Kechris, A. S. (1994). Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156. New York: Springer.Google Scholar
Miller, A. W. (2007). A hodgepodge of sets of reals. Note di Matematica, 27(Supplemento 1), 2539.Google Scholar
Pachl, J. & Sánchez Terraf, P. (2021). Semipullbacks of labelled Markov processes. Log. Methods Comput. Sci., 17(2), 3:13:12.Google Scholar
Sánchez Terraf, P. (2011). Unprovability of the logical characterization of bisimulation. Information and Computation, 209(7), 10481056.Google Scholar
Sangiorgi, D. (2011). Introduction to Bisimulation and Coinduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Zhou, C. (2013). Approximating bisimilarity for Markov processes. Electronic Notes in Theoretical Computer Science, 298, 427440.Google Scholar