Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-hd9dq Total loading time: 0.745 Render date: 2022-09-29T07:40:28.057Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

Adaptive set–point control of robotic manipulators with amplitude–limited control inputs

Published online by Cambridge University Press:  01 March 2000

E. Zergeroglu
Affiliation:
Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634–0915 (USA) E-mail: ddawson@eng.clemson.edu
W. Dixon
Affiliation:
Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634–0915 (USA) E-mail: ddawson@eng.clemson.edu
A. Behal
Affiliation:
Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634–0915 (USA) E-mail: ddawson@eng.clemson.edu
D. Dawson
Affiliation:
Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634–0915 (USA) E-mail: ddawson@eng.clemson.edu

Abstract

This paper addresses the link position setpoint control problem of n–link robotic manipulators with amplitude-limited control inputs. We design a global-asymptotic exact model knowledge controller and a semi-global asymptotic controller which adapts for parametric uncertainty. Explicit bounds for these controllers can be determined; hence, the required input torque can be calculated a priori so that actuator saturation can be avoided. We also illustrate how the proposed control algorithm in this paper can be slightly modified to produce a proportional-integral-derivative (PID) controller which contains a saturated integral term. Experimental results are provided to illustrate the improved performance of the proposed control strategy over a standard adaptive controller that has been artificially limited to account for torque saturation.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
55
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Adaptive set–point control of robotic manipulators with amplitude–limited control inputs
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Adaptive set–point control of robotic manipulators with amplitude–limited control inputs
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Adaptive set–point control of robotic manipulators with amplitude–limited control inputs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *