Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-569ts Total loading time: 0.277 Render date: 2022-10-04T22:24:05.838Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Article contents

An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees

Published online by Cambridge University Press:  11 March 2016

Andreas Bircher
Affiliation:
Autonomous Systems Lab at ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland E-mails: andreas.bircher@mavt.ethz.ch, ulrich.schwesinger@mavt.ethz.ch, sammy.omari@mavt.ethz.ch, michael.burri@mavt.ethz.ch, rsiegwart@ethz.ch
Kostas Alexis*
Affiliation:
University of Nevada, Reno, 1664 N. Virginia St., 89557, Reno, NV, US
Ulrich Schwesinger
Affiliation:
Autonomous Systems Lab at ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland E-mails: andreas.bircher@mavt.ethz.ch, ulrich.schwesinger@mavt.ethz.ch, sammy.omari@mavt.ethz.ch, michael.burri@mavt.ethz.ch, rsiegwart@ethz.ch
Sammy Omari
Affiliation:
Autonomous Systems Lab at ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland E-mails: andreas.bircher@mavt.ethz.ch, ulrich.schwesinger@mavt.ethz.ch, sammy.omari@mavt.ethz.ch, michael.burri@mavt.ethz.ch, rsiegwart@ethz.ch
Michael Burri
Affiliation:
Autonomous Systems Lab at ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland E-mails: andreas.bircher@mavt.ethz.ch, ulrich.schwesinger@mavt.ethz.ch, sammy.omari@mavt.ethz.ch, michael.burri@mavt.ethz.ch, rsiegwart@ethz.ch
Roland Siegwart
Affiliation:
Autonomous Systems Lab at ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland E-mails: andreas.bircher@mavt.ethz.ch, ulrich.schwesinger@mavt.ethz.ch, sammy.omari@mavt.ethz.ch, michael.burri@mavt.ethz.ch, rsiegwart@ethz.ch
*
*Corresponding author. E-mail: kalexis@unr.edu

Summary

A new algorithm, called rapidly exploring random tree of trees (RRTOT) is proposed, that aims to address the challenge of planning for autonomous structural inspection. Given a representation of a structure, a visibility model of an onboard sensor, an initial robot configuration and constraints, RRTOT computes inspection paths that provide full coverage. Sampling based techniques and a meta-tree structure consisting of multiple RRT* trees are employed to find admissible paths with decreasing cost. Using this approach, RRTOT does not suffer from the limitations of strategies that separate the inspection path planning problem into that of finding the minimum set of observation points and only afterwards compute the best possible path among them. Analysis is provided on the capability of RRTOT to find admissible solutions that, in the limit case, approach the optimal one. The algorithm is evaluated in both simulation and experimental studies. An unmanned rotorcraft equipped with a vision sensor was utilized as the experimental platform and validation of the achieved inspection properties was performed using 3D reconstruction techniques.

Type
Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stumm, E., Breitenmoser, A., Pomerleau, F., Pradalier, C. and Siegwart, R., “Tensor-voting-based navigation for robotic inspection of 3d surfaces using lidar point clouds,” 31 (12), 14651488 (2012).Google Scholar
2. Burri, M., Nikolic, J., Hurzeler, C., Caprari, G. and Siegwart, R., “Aerial Service Robots for Visual Inspection of Thermal Power Plant Boiler Systems,” Applied Robotics for the Power Industry, 2012 2nd International Conference on Zurich, Switzerland (2012) pp. 70–75.Google Scholar
3. Englot, B. and Hover, F. S., “Three-dimensional coverage planning for an underwater inspection robot,” 32 (9–10), 10481073 (2013).Google Scholar
4. Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T. and Siegwart, R., “Structural Inspection Path Planning Via Iterative Viewpoint Resampling with Application to Aerial Robotics,” IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA (May 2015) pp. 6423–6430. [Online]. Available: https://github.com/ethz-asl/StructuralInspectionPlanner Google Scholar
5. Bircher, A., Kamel, M., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T. and Siegwart, R., “Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots,” Autonomous Robots, Springer US, 1–25 (2015). DOI: 10.1007/s10514-015-9517-1, ISSN: 15737527.Google Scholar
6. Galceran, E. and Marc, M. Carreras, “A survey on coverage path planning for robotics,” Robot. Auton. Syst. 61 (12), 12581276 (2013).CrossRefGoogle Scholar
7. Barraquand, J. and Latombe, J.-C., “Robot motion planning: A distributed representation approach,” Int. J. Robot. Res. 10, 628649 (1991).CrossRefGoogle Scholar
8. Choset, H., “Coverage for robotics–a survey of recent results,” Ann. Math. Artif. Intell. 31 (1–4), 113126 (2001).CrossRefGoogle Scholar
9. Zelinsky, A., Jarvis, R. A., Byrne, J. and Yuta, S., “Planning Paths of Complete Coverage of an Unstructured Environment by a Mobile Robot,” Proceedings of International Conference on Advanced Robotics vol. 13, Tsukuba (1993) pp. 533–538.Google Scholar
10. Urrutia, J., “Art Gallery and Illumination Problems,” In: Handbook of Computational Geometry, Instituto de Mathematicas, Universidad Nacional Autonoma de Mexico: Mexico (2000) pp. 9731027.CrossRefGoogle Scholar
11. Shmoys, D., Lenstra, J., Kan, A. and Lawler, E., The Traveling Salesman Problem. Lenstra, J. K., Kan, A. R., Lawler, E. L., Shmoys, D. B., editors. The traveling salesman problem: a guided tour of combinatorial optimization. John Wiley & Sons (1985).Google Scholar
12. Englot, B. and Hover, F. S., “Sampling-Based Sweep Planning to Exploit Local Planarity in the Inspection of Complex 3d Structures,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Vilamoura (2012) pp. 4456–4463.Google Scholar
13. Danner, T. and Kavraki, L. E., “Randomized planning for short inspection paths,” IEEE International Conference in Robotics and Automation, 2000, Apr 24, Vol. 2, pp. 971–976, San Francisco, CA, USA.Google Scholar
14. Blaer, P. S. and Allen, P. K., “View planning and automated data acquisition for three-dimensional modeling of complex sites,” J. Field Robot. 26 (11–12), 865891.CrossRefGoogle Scholar
15. Papadopoulos, G., Kurniawati, H. and Patrikalakis, N., “Asymptotically Optimal Inspection Planning using Systems with Differential Constraints,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (2013) pp. 4126–4133.Google Scholar
16. Karaman, S. and Frazzoli, E., “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res. 30 (7), 846894 (2011).CrossRefGoogle Scholar
17. Plaku, E., Bekris, K. E., Chen, B. Y., Ladd, A. M. and Kavraki, L., “Sampling-based roadmap of trees for parallel motion planning,” IEEE Trans. Robot. 21 (4), 597608 (2005).CrossRefGoogle Scholar
18. Wang, W., Yan, L., Xu, X. and Yang, S. X., “An Adaptive Roadmap Guided Multi-RRTs Strategy for Single Query Path Planning,” Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Anchorage, AK, USA (2010) pp. 2871–2876.Google Scholar
19. Devaurs, D., Simeon, T., Cortés, J. et al., “A Multi-Tree Extension of the Transition-Based RRT: Application to Ordering-and-Pathfinding Problems in Continuous Cost Spaces,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA (2014) pp. 2991–2996.Google Scholar
20. Hsu, D., Kindel, R., Latombe, J. C. and Rock, S., “Randomized kinodynamic motion planning with moving obstacles,” The International Journal of Robotics Research, 21 (3), 233255 (2002 March). doi: 10.1177/027836402320556421.CrossRefGoogle Scholar
21. Achtelik, M. W., Lynen, S., Chli, M. and Siegwart, R., “Inversion Based Direct Position Control and Trajectory Following for Micro Aerial Vehicles,” IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), Tokyo, JP (2013) pp. 2933–2939.Google Scholar
22. Nikolic, J., Rehder, J., Burri, M., Gohl, P., Leutenegger, S., Furgale, P. T. and Siegwart, R., “A Synchronized Visual-Inertial Sensor System with FPGA Pre-Processing for Accurate Real-Time Slam,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) IEEE, Hong Kong (2014) pp. 431–437.Google Scholar
23. Ascending Technologies GmbH, “http://www.asctec.de/”.Google Scholar
25. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C. and Burgard, W., “OctoMap: An efficient probabilistic 3D mapping framework based on octrees,” Auton. Robots 34 (3), 189206 (2013).CrossRefGoogle Scholar

Bircher supplementary material

Bircher supplementary material 1

Download Bircher supplementary material(Video)
Video 10 MB
19
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *