Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54jdg Total loading time: 0.417 Render date: 2022-08-18T03:00:28.985Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Complementary control for robots with actuator redundancy: an underwater vehicle application

Published online by Cambridge University Press:  06 March 2015

Giovanni Indiveri*
Affiliation:
Dipartimento Ingegneria Innovazione, Università a del Salento, via Monteroni, 73100 Lecce, Italy
Alessandro Malerba
Affiliation:
Dipartimento Ingegneria Innovazione, Università a del Salento, via Monteroni, 73100 Lecce, Italy
*
*Corresponding author. E-mail: giovanni.indiveri@unisalento.it

Summary

Complementary filtering is a frequency based method used to design data processing algorithms exploiting signals with complementary spectra. The technique is mostly used in sensor fusion architectures, but it may also be effective in the design of state estimators. In spite of its potential in several areas of robotics, the complementary filtering paradigm is poorly used as compared to alternative time domain methods. The first part of the paper aims at reviewing the basics of complementary filtering in sensor data processing and linear systems state estimation. The second part of the paper describes how to exploit the main ideas of complementary filtering to design a depth controller for an actuator redundant autonomous underwater vehicle (AUV). Unlike with alternative state space methods commonly used to address the design of control solutions for actuator redundant systems, the proposed approach allows to fully exploit the knowledge of frequency characteristics of actuators. Simulation results are reported to demonstrate the effectiveness of the proposed solution.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alvarez, A., Caffaz, A., Caiti, A., Casalino, G., Gualdesi, L., Turetta, A. and Viviani, R., “Folaga: A low-cost autonomous underwater vehicle combining glider and AUV capabilities,” Ocean Eng. 36, 2438 (2008).CrossRefGoogle Scholar
2. Åström, K. and Hägglund, T., PID Controllers: Theory, Design, and Tuning, 2nd ed. (ISA: The Instrumentation, Systems, and Automation Society, USA, 1995).Google Scholar
3. Caccia, M., Bono, R., Bruzzone, G. and Veruggio, G., “Bottom-following for remotely operated vehicles,” Control Eng. Pract. 11, 461470 (2003).CrossRefGoogle Scholar
4. Caffaz, A., Caiti, A., Casalino, G. and Turetta, A., “The hybrid glider/AUV folaga,” IEEE Robot. Autom. Mag. 17 (1), 3144 (2010).CrossRefGoogle Scholar
5. Cristi, R., Papoulias, F. A. and Healey, A. J., “Adaptive sliding mode control of autonomous underwater vehicles in the dive plane,” IEEE J. Ocean. Eng. 15 (3), 152160 (1990).CrossRefGoogle Scholar
6. Fossen, T. I., Guidance and Control of Ocean Vehicles, 1st ed. (Wiley, England, 1994).Google Scholar
7. Härkegård, O. and Glad, S. T., “Resolving actuator redundancy – optimal control versus control allocation,” Automatica 41 (1), 137144 (2005).Google Scholar
8. Higgins, W., “A comparison of complementary and Kalman filtering,” IEEE Trans. Aerospace Electron. Syst. AES–11 (3), 321325 (1975).CrossRefGoogle Scholar
9. Kurtz, R. and Hayward, V., “Multiple-goal kinematic optimization of a parallel spherical mechanism with actuator redundancy,” IEEE Trans. Robot. Autom. 8 (5), 644651 (1992).CrossRefGoogle Scholar
10. Lin, C. F., Modern Navigation, Guidance, and Control Processing, (Prentice Hall, USA, 1991).Google Scholar
11. Mahony, R., Hamel, T. and Pflimlin, J. M., “Nonlinear complementary filters on the special orthogonal group,” IEEE Trans. Autom. Control 53 (5), 12031218 (2008).CrossRefGoogle Scholar
12. Malerba, A. and Indiveri, G. “Complementary Control of the Depth of an Underwater Robot,” Proceedings of the 2014 IFAC World Congress, IFAC, Cape Town, South Africa, vol. 19 (2014) pp. 8971–8976.Google Scholar
13. Salvucci, V., Kimura, Y., Oh, S., Koseki, T. and Hori, Y., “Comparing approaches for actuator redundancy resolution in biarticularly-actuated robot arms,” IEEE/ASME Trans. Mechatronics 19 (2), 765776 (2014).CrossRefGoogle Scholar
14. Silvestre, C. and Pascoal, A.Depth control of the INFANTE AUV using gain-scheduled reduced order output feedback,” Control Eng. Pract. 15 (7), 883895 (2007).CrossRefGoogle Scholar
15. Sørdalen, O., “Optimal thrust allocation for marine vessels,” Control Eng. Pract. 5 (9), 12231231 (1997).CrossRefGoogle Scholar
16. Steenson, L. V., Wang, L., Phillips, A. B., Turnock, S. R., Furlong, M. E. and Rogers, E., “Experimentally Verified Depth Regulation for AUVs using Constrained Model Predictive Control,” Proceedings of the 2014 IFAC World Congress, IFAC, Cape Town, South Africa, vol. 19 (2014) pp. 11974–11979.Google Scholar
17. Zanoli, S. and Conte, G.Remotely operated vehicle depth control,” Control Eng. Pract. 11, 453459.CrossRefGoogle Scholar
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Complementary control for robots with actuator redundancy: an underwater vehicle application
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Complementary control for robots with actuator redundancy: an underwater vehicle application
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Complementary control for robots with actuator redundancy: an underwater vehicle application
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *