Published online by Cambridge University Press: 29 August 2018
A time-optimal problem for redundantly actuated robots moving on a specified path is a challenging problem. Although the problem is well explored and there are proposed solutions based on phase plane analysis, there are still several unresolved issues regarding calculation of solution curves. In this paper, we explore the characteristics of the maximum velocity curve and propose an efficient algorithm to establish the solution curve. Then we propose a straightforward method to calculate the maximum or minimum possible acceleration on the path based on the pattern of saturated actuators, which substantially reduces the computational cost. Two numerical examples are provided to illustrate the issues and the solutions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.