Published online by Cambridge University Press: 09 March 2009
This paper describes an efficient and fast algorithm for finding the minimum distance between two convex polyhedrons in a three dimensional space. To obtain the minimal distance, the proposed computational scheme is based on a direct approach to minimizing the distance function which produces a succession of optimal search directions along object boundaries. This algorithm combines the gradient projection method'; and an additional optimal search direction when the gradient projection method leads to a zigzagging phenomenon. In this case, the additional optimal search direction accelerates significantly the convergence of the process. Extensive numerical experiments with convex polyhedra show the performance of this algorithm when compared with that of previous approaches. The proposed algorithm may be very helpful in solving the computation of minimal distance between a pair of convex sets, the collision detection problem or to track the closest points of moving convex objects.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.