Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.281 Render date: 2021-03-07T22:54:57.513Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures

Published online by Cambridge University Press:  26 October 2009

Gastone Ciuti
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy
Pietro Valdastri
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy
Arianna Menciassi
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy IIT, Italian Institute of Technology Network, Genova, Italy
Paolo Dario
Affiliation:
Scuola Superiore Sant'Anna – CRIM Lab, Pisa, Italy IIT, Italian Institute of Technology Network, Genova, Italy
Corresponding
E-mail address:

Summary

This paper describes a novel approach to capsular endoscopy that takes advantage of active magnetic locomotion in the gastrointestinal tract guided by an anthropomorphic robotic arm. Simulations were performed to select the design parameters allowing an effective and reliable magnetic link between the robot end-effector (endowed with a permanent magnet) and the capsular device (endowed with small permanent magnets). In order to actively monitor the robotic endoluminal system and to efficiently perform diagnostic and surgical medical procedures, a feedback control based on inertial sensing was also implemented. The proposed platform demonstrated to be a reliable solution to move and steer a capsular device in a slightly insufflated gastrointestinal lumen.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Reavis, K. M. and Melvin, W. S., “Advanced endoscopic technologies,” Surg. Endosc. 22, 15331546 (2008).CrossRefGoogle ScholarPubMed
2. McGee, M. F., Rosen, M. J., Marks, J., Onders, R. P., Chak, A., Faulx, A., Chen, V. K. and Ponsky, J., “A primer on natural orifice transluminal endoscopic surgery: Building a new paradigm,” Surg. Innovation 13, 8693 (2006).CrossRefGoogle ScholarPubMed
3. Iddan, G. J. and Swain, C. P., “History and development of capsule endoscopy,” Gastrointest. Endosc. 14, 19 (2004).CrossRefGoogle ScholarPubMed
4. Iddan, G., Meron, G., Glukhoysky, A. and Swain, P., “Wireless capsule endoscopy,” Nature 405, 405417 (2000).CrossRefGoogle ScholarPubMed
5. Moglia, A., Menciassi, A., Schurr, M. O. and Dario, P., “Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems,” Biomed. Microdevices 9, 235243 (2007).CrossRefGoogle ScholarPubMed
6. Moglia, A., Menciassia, A., Dario, P. and Cuschieri, A., “Clinical update: Endoscopy for small-bowel tumors”, The Lancet 370, 114116 (2007).CrossRefGoogle Scholar
7. VECTOR European Project website. Available on: http://www.vector-project.com. Last accessed August 2009.Google Scholar
8. Menciassi, A., Quirini, M. and Dario, P., “Microrobotics for future gastrointestinal endoscopy,” Minim. Invasive Therapy Allied Technol. 16, 91100 (2007).CrossRefGoogle ScholarPubMed
9. Park, H., Park, S., Yoon, E., Kim, B., Park, J. and Park, S., “Paddling Based Microrobot for Capsule Endoscopes,” Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy (Apr. 2007) pp. 33773382.Google Scholar
10. Quirini, M., Scapellato, S., Menciassi, A., Dario, P., Rieber, F., Ho, C. N., Schostek, S. and Schurr, M. O., “Feasibility proof of a legged locomotion capsule for the GI tract,” Gastrointest. Endosc. 67, 11531158 (2008).CrossRefGoogle ScholarPubMed
11. Quirini, M., Webster, R., Menciassi, A. and Dario, P., “Design of a Pillsized 12-Legged Endoscopic Capsule Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy (Apr. 2007) pp. 18561862.Google Scholar
12. Sidhu, R., Sanders, D. S. and McAlindon, M. E., “Gastrointestinal capsule endoscopy: From tertiary centres to primary care,” Br. Med. J. 332, 528531 (2006).CrossRefGoogle ScholarPubMed
13. Carpi, F., Galbiati, S. and Carpi, A., “Controlled navigation of endoscopic capsules: Concept and preliminary experimental investigations,” IEEE Trans. Biomed. Eng. 54, 20282036 (2007).CrossRefGoogle ScholarPubMed
14. Volke, F., Keller, J., Schneider, A., Gerber, J., Reimann-Zawadzki, M., Rabinovitz, E., Mosse, C. A. and Swain, P., “In-vivo remote manipulation of modified capsule endoscopes using an external magnetic field,” Gastrointest. Endosc. 5, AB121AB122 (2008).Google Scholar
15. Olympus Endocapsule. Available on: http://www.olympus-europa.com/endoscopy/. Last accessed August 2009.Google Scholar
16. Wang, X. and Meng, M. Q. H., “A Magnetic Stereo Actuation Mechanism for Active Capsule Endoscope,” Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society, Lyon, France (Sep. 2007) pp. 2811–2814.Google Scholar
17. Abbott, J. J., Ergeneman, O., Kummer, M. P., Hirt, A. M. and Nelson, B. J., “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23, 12471252 (2007).CrossRefGoogle Scholar
18. Tamaz, S., Gourdeau, R., Chanu, A., Mathieu, J. B. and Martel, S., “Real-time MRI-based control of a ferromagnetic core for endovascular navigation,” IEEE Trans. Biomed. Eng. 55, 18541863 (2008).CrossRefGoogle ScholarPubMed
19. Stereotaxis website. Available on: http://www.stereotaxis.com. Last accessed August 2009.Google Scholar
20. Agashe, J. S. and Arnold, D. P., “A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solution,” J. Phys. D: Appl. Phys. 41, 105001-1-9 (2008).CrossRefGoogle Scholar
21. Manz, B., Benecke, M. and Volke, F., “A simple, small and low cost permanent magnet design to produce homogeneusmagnetic fields,” J. Magn. Reson. 192, 131138 (2008).CrossRefGoogle Scholar
22. Glaser, R., Biophysics (Springer, Heidelberg, Germany, 2001).Google ScholarPubMed
23. NDI The Aurora Electromagnetic Measurement System. Available on: http://www.ndigital.com. Last accessed August 2009.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 535 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *