Skip to main content

An improved kinematic calibration method for serial manipulators based on POE formula

  • Chenguang Chang (a1) (a2) (a3), Jinguo Liu (a1), Zhiyu Ni (a1) and Ruolong Qi (a1)

Existing measurement equipments easily determine position with high precision. However, they evaluate orientation with low precision. It is necessary to minimize the effect of measurement error on identification accuracy. In this study, a method for kinematic calibration based on the product of exponentials (POE) is presented to improve the absolute positioning accuracy of a sliding manipulator. An error model with uniform and generic modeling rules is established in which the tool frame is selected as the reference frame. Furthermore, the redundant parameters of the error model are removed. Subsequently, the actual kinematic parameters are identified by using the least square method. Finally, the process of the improved method is discussed. Kinematic calibration simulations of a sliding manipulator are implemented. The results indicate that the proposed method significantly improves the precision of the sliding manipulator. The improved POE kinematic calibration method offers convenience, efficiency, and high precision. The proposed method can be applied to all types of serial robots with n-DOF

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Fatikow, S., Seyfried, J., Fahlbusch, S., Buerkle, A. and Schmoeckel, F., “A flexible microrobot-based microassembly station,” J. Intell. Robot. Syst. 27 (1), 135169 (2000).
2. Ouyang, P. R., Zhang, W. J., Gupta, M. M. and Zhao, W., “Overview of the development of a visual based automated bio-micromanipulation system,” Mechatronics 17 (10), 578588 (2007).
3. Xu, Q., Li, Y. M. and Xi, N., “Design, fabrication, and visual servo control of an XY parallel micromanipulator with piezo-actuation,” IEEE Trans. Autom. Sci. Eng. 6 (4), 710719 (2009).
4. Shiakolas, P. S., Conrad, K. L. and Yih, T. C., “On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots,” Int. J. Modelling Simul. 22 (4), 245254 (2002).
5. Judd, R. P. and Knasinski, A. B., “A technique to calibrate industrial robots with experimental verification,” IEEE Trans. Robot. Autom. 6 (1), 2030 (1987).
6. Roth, Z. S., Mooring, B. W. and Ravani, B., “An overview of robot calibration,” IEEE J. Robot. & Autom. 3 (5), 377385 (1987).
7. Schröer, K., Albright, S. L. and Grethlein, M., “Complete, minimal and model-continuous kinematic models for robot calibration,” Robot. Comput.-Integr. Manuf. 13 (1), 7385 (1997).
8. Denavit, J. and Hartenberg, R. S., “A kinematic notation for lower-pair mechanisms based on matrices,” Trans. AESM. J. Appl. Mech. 22 (6), 215221 (Jun. 1955).
9. Hayati, S. A., “Robot Arm Geometric Link Parameter Estimation,” Proceedings of the 22th IEEE Conference on Decision & Control, San Antonio, USA (1983) pp. 14771483.
10. Stone, H. W. and Sanderson, A. C., “Statistical Performance Evaluation of the S-Model Arm Signature Identification Technique,” IEEE Trans. Robot. & Autom. 2 (2), 939946 (1988).
11. Zhuang, H. Q., Roth, Z. S. and Hamano, F., “A Complete and Parametrically Continuous Kinematic Model for Robot Manipulators,” IEEE Trans. Robot. & Autom. 8 (4), 451463 (1992).
12. Brockett, R. W., “Robotic Manipulators and the Product of Exponentials Formula,” In: Mathematical Theory of Networks and Systems (Fuhrman, P. A., ed.), (Springer, Berlin Heidelberg, 1984) pp. 120129.
13. Park, F. C. and Okamura, K., “Kinematic Calibration and the Product of Exponentials Formula,” In Advances in Robot Kinematics and Computational Geometry (Lenarčič, J. and Ravani, B. eds.) (MIT Press, Cambridge, 1994) pp. 119128.
14. Okamura, K. and Park, F. C., “Kinematic calibration using the product of exponentials formula,” Robotica 14 (4), 415421 (1996).
15. Chen, I. M., Yang, G. L., Tan, C. T. and Song, H. Y., “Local POE model for robot kinematic calibration,” Mechanism & Machine Theory 36 (11), 12151239 (2001).
16. Lou, Y. J., Chen, T. N., Wu, Y. Q. and Li, Z. B., “Improved and Modified Geometric Formulation of POE Based Kinematic Calibration of Serial Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, USA (2009) pp. 52615266.
17. He, R. B., Zhao, Y. J., Yang, S. N. and Yang, S. Z., “Kinematic-parameter identification for serial-robot calibration based on POE formula,” IEEE Trans. Robot. 26 (3), 411423 (2010).
18. Yang, X. D., Wu, L., Li, J. Q. and Chen, K., “A minimal kinematic model for serial robot calibration using POE formula,” Robot. Comput. Integr. Manuf. 30 (3), 326334 (2014).
19. He, R. B., Li, X. W., Shi, T. L., Wu, B., Zhao, Y. J., Han, F. J., Yang, S. J., Huang, S. H. and Yang, S. Z., “A kinematic calibration method based on the product of exponentials formula for serial robot using position measurements,” Robotica 33 (6), 119 (2014).
20. Wu, L., Yang, X. D., Chen, K. and Ren, H. J., “A minimal POE-based model for robotic kinematic calibration with only position measurements,” IEEE Trans. Autom. Sci. Eng. 12 (2), 758763 (2015).
21. Gao, W. B., Wang, H. G., Jiang, Y. and Pan, X. A., “Kinematic calibration method of robots based on distance error,” Robotics 35 (5), 600606 (2013).
22. Guo, S. X., Sugimoto, K. and Hata, S., “Development of A Macro/micro Mechanism for Human Scale Teleoperating System,” Proceedings of the International Symposium on Micromechatronics and Human Science, Nagoya, Japan (2000) pp. 163168.
23. Qi, R. L., Zhou, W. J., Zhang, H. J., Zhang, W. and Yang, G. X., “Trace generation of friction stir welding robot for space weld joint on large thin-walled parts,” Ind. Robot. Int. J. 43 (6), 617627 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 59 *
Loading metrics...

* Views captured on Cambridge Core between 16th May 2018 - 26th May 2018. This data will be updated every 24 hours.