Skip to main content
×
×
Home

Bidding coordination algorithm with CFC and an emotion switch

  • Zhifeng Yao (a1) (a2), Xiufen Ye (a1) and Xuefeng Dai (a2)
Summary

Exploration is a fundamental problem in robotics, and multi-robot systems exploration has been extensively studied in this field. In order to overcome the problem of a non-optimal target being selected in the exploration process, a revised single linkage clustering frontier cell (CFC) algorithm is proposed to calculate the exploration benefit of all available frontier cells. Moreover, there exist unexplored islands for most of the bidding-based multi-robot coordination algorithms in the exploration of unknown environments. To deal with this problem, some rules switched by emotion states are proposed. So, the proposed bidding coordination algorithm with CFC and an emotion switch has a hierarchical architecture. The upper level is modeled as an automaton, which is used to represent emotion status, and the emotion variables decide whether a robot will participate in a bid and explore an unknown area abiding by the walking rules. In the lower level, the robots perform bidding activities with CFC and the walking rules according to the emotion variables. We tested and evaluated our approach by means of experiments both in a simulated environment and with real robots. The experiments results demonstrate that the exploration efficiency is improved, and our algorithm has a greater coverage rate than classic bidding-based coordination algorithms.

Copyright
Corresponding author
*Corresponding author. E-mail: yexiufen@hrbeu.edu.cn
References
Hide All
1. Juliá, M., Gil, A. and Reinoso, O., “A comparison of path planning strategies for autonomous exploration and mapping of unknown environment,” Auton. Robots 33 (3), 427444 (2012).
2. Alberto, Q. L., Riccardo, C., Michele, G. and Francesco, A., “A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings,” Auton. Robots 40 (4), 581597 (2015).
3. Jones, E. G., Dias, M. B. and Stentz, A., “Time-extended multi-robot coordination for domains with intra-path constraints,” Auton. Robots 30 (1), 4156 (2011).
4. Balaguer, B., Balakirsky, S., Carpin, S. and Visser, A., “Evaluating maps produced by urban search and rescue robots: Lessons learned from RoboCup,” Auton. Robots 27 (4), 449464 (2009).
5. Nevatia, Y., Stoyanov, T., Rathnam, R., Pfingsthorn, M., Markov, S., Ambrus, R. and Birk, A., “Augmented Autonomy: Improving Human-Robot Team Performance in Urban Search and Rescue,” Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems (2008) pp. 2103–2108.
6. Thornburg, K. and Thomas, G., “Robotic exploration utility for urban search and rescue tasks,” J. Comput. 4 (10), 975980 (2009).
7. Bona, B., Carlone, L., Indri, M. and Rosa, S., “Supervision and monitoring of logistic spaces by a cooperative robot team: Methodologies, problems, and solutions,” Intell. Service Robot. 7 (4), 185202 (2014).
8. Widodo, B., “Intelligent surveillance robot with obstacle avoidance capabilities using neural network,” Comput. Intell. Neurosci. 2015, 15 (2015).
9. Ozog, P., Carlevaris-Bianco, N., Kim, A. and Eustice, R. M., “Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle,” J. Field Robot. 33 (3), 265289 (2016).
10. Nuske, S., Choudhury, S., Jain, S., Chambers, A., Yoder, L., Scherer, S., Chamberlain, L., Cover, H. and Singh, S., “Autonomous exploration and motion planning for an unmanned aerial vehicle navigating rivers,” J. Field Robot. 32 (8), 11411162 (2015).
11. Droeschel, D., Nieuwenhuisen, M., Beul, M., Holz, D., Stckler, J. and Behnke, S., “Multilayered mapping and navigation for autonomous micro aerial vehicles,” J. Field Robot. 33 (4), 451475 (2016).
12. Yamauchi, B., “Frontier-Based Exploration Using Multiple Robots,” Proceedings of the 2nd International Conference on Autonomous Agents (1998) pp. 47–53.
13. Burgard, W., Moors, M., Stachniss, C. and Schneider, F. E., “Coordinated multi-robot exploration,” IEEE Trans. Robot. 21 (3), 376386 (2005).
14. Dias, M. B., Zlot, R., Kalra, N. and Stentz, A., “Market-based multirobot coordination: A survey and analysis,” Proc. IEEE 94 (7), 12571270 (2006).
15. Wang, Y. and Silva, C. W., “A machine-learning approach to multi-robot coordination,” Eng. Appl. Artif. Intell. 21 (3), 470484 (2008).
16. Prieto, A., Becerra, J. A., Bellas, F. and Duro, R. J., “Open-ended evolution as a means to self-organize heterogeneous multi-robot systems in real time,” Robot. Auton. Syst. 58 (12), 12821291 (2010).
17. Banik, S. C., Watanabe, K., Habib, M. K. and Izumi, K., Affection Based Multi-Robot Team Work (Springer-Verlag Berlin Heidelberg, 2008) pp. 355375.
18. Banik, S. C., Watanabe, K., Habib, M. K. and Izumi, K., “An Emotion-Based Task Sharing Approach for a Cooperative Multiagent Robotics System,” Proceedings of the IEEE International Conference on Mechatronics and Automation (2008) 77–82.
19. Elango, M., Nachiappan, S. and Tiwari, M. K., “Balancing task allocation in multi-robot systems using K-means and auction based mechanisms,” Expert Syst. Appl. 38 (6), 64866491 (2011).
20. Ozturk, S. and Kuzucuoglu, A. E, “Optimal bid valuation using path finding for multi-robot task allocation,” J. Intell. Manuf. 26 (5), 10491062 (2015).
21. Puig, D., Garcia, M. A. and Wu, L., “A new global optimization strategy for coordinated multi-robot exploration: Development and comparative evaluation,” Robot. Autom. Syst. 59 (9), 635653 (2011).
22. Lujak, M., Billhardt, H. and Ossowski, S., “Distributed coordination of emergency medical service for angioplasty patients,” Ann. Math. Artif. Intell. 78 (1), 73100 (2016).
23. Gu, F., He, Y. Q., Han, J. D. and Wang, Y. C., “An active cooperative observation method for multi-robots in three dimensional environments,” Acta Autom. Sin. 36 (10), 14431453 (2010).
24. Yao, Z. F., Ye, X. F. and Dai, X. F., “A bidding based coordination algorithm with emotion for multi-robot exploration,” ICIC Express Lett., Part B: Appl. 6 (8), 20872092 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed