Skip to main content Accessibility help
×
×
Home

Collision-free workspace of parallel mechanisms based on an interval analysis approach

  • MohammadHadi FarzanehKaloorazi (a1), Mehdi Tale Masouleh (a2) and Stéphane Caro (a3)
Summary

This paper proposes an interval-based approach in order to obtain the obstacle-free workspace of parallel mechanisms containing one prismatic actuated joint per limb, which connects the base to the end-effector. This approach is represented through two cases studies, namely a 3-RPR planar parallel mechanism and the so-called 6-DOF Gough–Stewart platform. Three main features of the obstacle-free workspace are taken into account: mechanical stroke of actuators, collision between limbs and obstacles and limb interference. In this paper, a circle(planar case)/spherical(spatial case) shaped obstacle is considered and its mechanical interference with limbs and edges of the end-effector is analyzed. It should be noted that considering a circle/spherical shape would not degrade the generality of the problem, since any kind of obstacle could be replaced by its circumscribed circle/sphere. Two illustrative examples are given to highlight the contributions of the paper.

Copyright
Corresponding author
*Corresponding author. E-mail: hamidfarzane88@gmail.com
References
Hide All
1. Merlet, J. P., Parallel Robots. (Springer, 2006).
2. Gosselin, C. M. and Jean, M., “Determination of the workspace of planar parallel manipulators with joint limits,” Robot. Auton. Syst. 17 (3), 129138 (1996).
3. Bohigas, O., Henderson, M. E., Ros, L., Manubens, M. and Porta, J. M., “Planning singularity-free paths on closed-chain manipulators,” IEEE Trans. Robot. 29 (4), 888898, (2013).
4. Zi, B., Lin, J. and Qian, S., “Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes,” Robot. Comput.-Integr. Manuf. 34, 105123, (2015).
5. Laliberte, T. and Gosselin, C. M., “Efficient Algorithms for the Trajectory Planning of Redundant Manipulators with Obstacle Avoidance,” 1994 IEEE International Conference on Robotics and Automation4, (1994), pp. 2044–2049.
6. Brock, O. and Khatib, O., “Elastic strips: A framework for motion generation in human environments,” Int. J. Robot. Res. 21 (12), 10311052 (2002).
7. Khatib, O., Yokoi, K., Brock, O., Chang, K. and Casal, A., “Robots in human environments: Basic autonomous capabilities,” Int. J. Robot. Res. 18 (7), 684696 (1999).
8. Komainda, A. and Hiller, M., “Control of Heavy Load Manipulators in Varying Environments,” Proceedings of IAARC/IFAC/IEEE International Symposium on Automation and Robotics in Construction, Madrid, Spain (1999) pp. 22–24.
9. Jiménez, P., Thomas, F. and Torras, C., “3d collision detection: A survey,” Comput. Graph. 25 (2), 269285 (2001).
10. Wenger, P. and Chedmail, P., “On the connectivity of manipulator free workspace,” J. Robot. Syst. 8 (6), 767799 (1991).
11. Caro, S., Chablat, D., Goldsztejn, A., Ishii, D. and Jermann, C., “A branch and prune algorithm for the computation of generalized aspects of parallel robots,” Artif. Intell. 211, 3450, (2014).
12. FarzanehKaloorazi, M., Masouleh, M. T. and Caro, S., “Collision-Free Workspace of 3-rpr Planar Parallel Mechanism Via Interval Analysis,” In: Advances in Robot Kinematics. (Springer, 2014) pp. 327334.
13. Bihari, B., Kumar, D., Jha, C., Rathore, V. S. and Dash, A. K., “A geometric approach for the workspace analysis of two symmetric planar parallel manipulators,” Robotica, 34 (4), 738763, (2016).
14. Moore, R. and Bierbaum, F., Methods and Applications of Interval Analysis. Vol. 2 (Society for Industrial Mathematics, 1979).
15. Jaulin, L., “Set-membership localization with probabilistic errors,” Robot. Auton. Syst. 59 (6), 489495 (2011).
16. Kaloorazi, M. H. F., Masouleh, M. T., and Caro, S., “Determining the maximal singularity-free circle or sphere of parallel mechanisms using interval analysis,” Robotica 34 (1), 135149, (2016).
17. Merlet, J., “Interval analysis and robotics,” Robot. Res., 147–156, (2010).
18. Merlet, J. P., “Solving the forward kinematics of a gough-type parallel manipulator with interval analysis,” Int. J. Robot. Res. 23 (3), 221235, (2004).
19. Kaloorazi, M., Masouleh, M. T., and Caro, S., “Interval-Analysis-Based Determination of the Singularity-Free Workspace of Gough-Stewart Parallel Robots,” Electrical Engineering (ICEE), 2013 21st Iranian Conference on IEEE, (2013) pp. 1–6.
20. Kaloorazi, M. H. Farzaneh, Masouleh, M. Tale and Caro, S., “On the Maximal Singularity-free Workspace of Parallel Mechanisms via Interval Analysis,” Proceedings of the 2013 MultiBody Dynamics MBD2013, Zagreb, Croatia, (2013).
21. Merlet, J.-P., “Determination of 6d workspaces of gough-type parallel manipulator and comparison between different geometries,” Int. J. Robot. Res. 18 (9), 902916 (1999).
22. Kaloorazi, M.-H. F., Masouleh, M. T. and Caro, S., “Determination of the maximal singularity-free workspace of 3-dof parallel mechanisms with a constructive geometric approach,” Mech. Mach. Theory 84, pp. 2536 (2015).
23. Pott, A., Franitza, D. and Hiller, M., “Orientation Workspace Verification for Parallel Kinematic Machines with Constant Leg Length,” Proceedings of the Mechatronics and Robotics, Aachen, Germany (Sep. 2004) pp. 13–15.
24. Merlet, J.-P., “An Improved Design Algorithm Based on Interval Analysis for Spatial Parallel Manipulator with Specified Workspace,” IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA., vol. 2. IEEE, (2001), pp. 1289–1294.
25. Otis, M. J., Perreault, S., Nguyen-Dang, T.-L., Lambert, P., Gouttefarde, M., Laurendeau, D. and Gosselin, C., “Determination and management of cable interferences between two 6-dof foot platforms in a cable-driven locomotion interface,” IEEE Trans. Syst. Man Cybern. A 39 (3), 528544 (2009).
26. Gouttefarde, M., Daney, D. and Merlet, J., “Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots,” IEEE Trans. Robot. 27 (1), 113 (2011).
27. Dwyer, P., “Computation with approximate numbers,” pp. 11–34 (1951).
28. Sungana, T., “Theory of Interval Algebra and Application to Numerical Analysis,” pp. 29–46, (1958).
29. Warmus, M., “Calculus of approximations,” Bull. Acad. Pol. Sci. 4 (5), 253257 (1956).
30. Wilkinson, J., “Turings work at the national physical laboratory and the construction of pilot ace, deuce, and ace,” Metropolis et al.[MHR80], pp. 101–114, (1980).
31. Moore, R. E., Interval Analysis. Series in Automatic Computation, (Prentice-Hall, Englewood Cliff, NJ, 1966).
32. Hansen, E. and Walster, G., Global Optimization Using Interval Analysis: Revised and Expanded (CRC, 2003, vol. 264).
33. Hao, F. and Merlet, J., “Multi-criteria optimal design of parallel manipulators based on interval analysis,” Mech. Mach. Theory 40 (2), 157171 (2005).
34. Chablat, D., Wenger, P., Majou, F. and Merlet, J., “An interval analysis based study for the design and the comparison of three-degrees-of-freedom parallel kinematic machines,” Int. J. Robot. Res. 23 (6), 615624 (2004).
35. Rao, R., Asaithambi, A. and Agrawal, S., “Inverse kinematic solution of robot manipulators using interval analysis,” J. Mech. Des. 120 (1), 147150 (1998).
36. Fusiello, A., Benedetti, A., Farenzena, M. and Busti, A., “Globally convergent autocalibration using interval analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 26 (12), 16331638 (2004).
37. Wabinski, W. and Martens, H.-J. von, “Time Interval Analysis of Interferometer Signals for Measuring Amplitude and Phase of Vibrations,” Second International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. International Society for Optics and Photonics, 1996, pp. 166177.
38. Oetomo, D., Daney, D., Shirinzadeh, B., and Merlet, J., “Certified Workspace Analysis of 3RRR Planar Parallel Flexure Mechanism,” IEEE International Conference on Robotics and Automation (ICRA). IEEE, (2008) pp. 38383843.
39. Van Hentenryck, P., McAllester, D. and Kapur, D., “Solving polynomial systems using a branch and prune approach,” SIAM J. Numer. Anal. 34 (2), 797827 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed