Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-15T13:15:38.777Z Has data issue: false hasContentIssue false

Control framework of the ROBILAUT soil sampling robot: system overview and experimental results

Published online by Cambridge University Press:  23 May 2024

Daniele Di Vito*
Affiliation:
Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy
Paolo Di Lillo
Affiliation:
Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy
Filippo Arrichiello
Affiliation:
Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy
Cesare Ferone
Affiliation:
Natura srl, Casoria, Italy
Raffaele Amico
Affiliation:
OCIMA srl, Caivano, Italy
Gianluca Antonelli
Affiliation:
Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy
*
Corresponding author: Daniele Di Vito; Email: daniele.divito@unicas.it

Abstract

The paper presents the control architecture of a crawler mobile robot designed and developed to sample potentially contaminated lands. The robot, developed in the framework of an Italian national project named ROBILAUT, carries a driller with a customized sampling mechanism to implement on-site the required quartering, and it is controlled to move the drilling device on specific points acquired in real time before the mission starts. The paper describes the software architecture for the navigation and control, focusing on the control framework of the robotic platform. Specifically, the robot exhibits a differential drive kinematics with actuators’ constraints, and two different control strategies have been experimentally tested for comparison both in a structured environment and in the real site in May 2023.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Edulji, V., Soman, S., Pradhan, A. and Shah, J., A mobile semi-autonomous robot for soil sampling, (2021).CrossRefGoogle Scholar
Chiodini, S., Carron, A., Pertile, M., Todescato, M., Bertolutti, E., Bilato, A., Boscardin, A., Corra, G., Correnti, A., Dalla Vecchia, R., Dal Lago, N., Fadone, M., Fogarollo, S., Milani, H., Mion, E.,Paganini, D., Quadrelli, F., Soldà, G., Todescan, A., Toffanin, E. and Debei, S., “Morpheus: A Field Robotics Testbed for Soil Sampling and Autonomous Navigation,” In: Proceedings of the Proc. 1st Symposium on Space Educational Activities, (2015).Google Scholar
Olmedo, N. A., Barczyk, M., Zhang, H., Wilson, W. and Lipsett, M. G., “A UGV-based modular robotic manipulator for soil sampling and terramechanics investigations,” J Unmann Vehi Syst 8(4), 364381 (2020).CrossRefGoogle Scholar
Vaeljaots, E., Lehiste, H., Kiik, M. and Leemet, T., “Soil sampling automation case-study using unmanned ground vehicle,” Eng Rural Dev 17, 982987 (2018).Google Scholar
Väljaots, E., Lehiste, H., Kiik, M. and Leemet, T., “Soil sampling automation using mobile robotic platform,” Agro Res 16, 917922 (2018).Google Scholar
David, C. N. A., Yumol, J. V., Garcia, R. G. and Ballado, A. H., “Swarm Robotics Application for Gathering Soil Samples,” In: Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). IEEE, (2021) pp. 16.Google Scholar
Yokoi, K., Kawabata, M., Sakai, S., Kawamura, S., Sakagami, N., Matsuda, S., Mitsui, A. and Sano, K., “Improvement of a Human-Portable Underwater Robot for Soil Core Sampling,” In: Proceedings of the 2014 Oceans-St. John’s. IEEE, (2014) pp. 16.Google Scholar
Isaka, K., Tsumura, K., Watanabe, T., Toyama, W., Sugesawa, M., Yamada, Y., Yoshida, H. and Nakamura, T., “Development of underwater drilling robot based on earthworm locomotion,” IEEE Access 7, 103127103141 (2019).CrossRefGoogle Scholar
Isaka, K., Tsumura, K., Watanabe, T., Toyama, W., Okui, M., Yoshida, H. and Nakamura, T., “Soil discharging mechanism utilizing water jetting to improve excavation depth for seabed drilling explorer,” IEEE Access 8, 2856028570 (2020).CrossRefGoogle Scholar
Feng, Y. and Wang, J., “GPS RTK performance characteristics and analysis,” J Glob Position Syst 7(1), 18 (2008).CrossRefGoogle Scholar
Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G., Robotics: Modelling, Planning and Control (Springer Verlag, 2009).CrossRefGoogle Scholar
Oriolo, G., De Luca, A. and Vendittelli, M., “WMR control via dynamic feedback linearization: Design, implementation, and experimental validation,” IEEE Trans Contr Syst Tech 10(6), 835852 (2002).CrossRefGoogle Scholar
Borrelli, F., Bemporad, A. and Morari, M., Predictive Control for Linear and Hybrid Systems (Cambridge University Press, 2017).CrossRefGoogle Scholar