Skip to main content

Design and application of an adaptive backstepping sliding mode controller for a six-DOF quadrotor aerial robot

  • Mohd Ariffanan Mohd Basri (a1)

The quadrotor aerial robot is a complex system and its dynamics involve nonlinearity, uncertainty, and coupling. In this paper, an adaptive backstepping sliding mode control (ABSMC) is presented for stabilizing, tracking, and position control of a quadrotor aerial robot subjected to external disturbances. The developed control structure integrates a backstepping and a sliding mode control approach. A sliding surface is introduced in a Lyapunov function of backstepping design in order to further improve robustness of the system. To attenuate a chattering problem, a saturation function is used to replace a discontinuous sign function. Moreover, to avoid a necessity for knowledge of a bound of external disturbance, an online adaptation law is derived. Particle swarm optimization (PSO) algorithm has been adopted to find parameters of the controller. Simulations using a dynamic model of a six degrees of freedom (DOF) quadrotor aerial robot show the effectiveness of the approach in performing stabilization and position control even in the presence of external disturbances.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Sun, Y., Xian, N. and Duan, H., “Linear-quadratic regulator controller design for quadrotor based on pigeon-inspired optimization,” Aircr. Eng. Aerosp. Technol. 88 (6), 761770 (2016).
2. Yiqun, D., Jun, F., Bin, Y., Youmin, Z. and Liang, A. Jian, “Position and Heading Angle Control of an Unmanned Quadrotor Helicopter Using LQR Method,” Proceedings of the 34th Chinese Control Conference (CCC) Hangzhou, China (2015) pp. 5566–5571.
3. Rinaldi, F., Chiesa, S. and Quagliotti, F., “Linear quadratic control for quadrotors UAVs dynamics and formation flight,” J. Intell. Robot. Syst. 70 (1–4), 203220 (2013).
4. Sabzevari, D., Kargar, S. M. and Zanjani, S. M. A., “Mathematical modeling and designing PID controller for a Quadrotor and optimize its step response by Genetic Algorithm,” Majlesi J. Electr. Eng. 10 (4), 1724 (2016).
5. Junior, J. C. V., De Paula, J. C., Leandro, G. V. and Bonfim, M. C., “Stability control of a quad-rotor using a PID controller,” Braz. J. Instrum. Control 1 (1), 1520 (2013).
6. Noordin, A., Basri, M. A. M., Mohamed, Z. and Abidin, A. F. Z., “Modelling and PSO fine-tuned PID control of quadrotor UAV,” Int. J. Adv. Sci. Eng. Inf. Technol. 7 (4), 13671373 (2017).
7. Prayitno, A., Indrawati, V. and Utomo, G., “Trajectory tracking of AR. Drone quadrotor using fuzzy logic controller,” TELKOMNIKA 12 (4), 819828 (2014).
8. Torres, F., Rabhi, A., Lara, D., Romero, G. and Pégard, C., “Fuzzy state feedback for attitude stabilization of quadrotor,” Int. J. Adv. Robot. Syst. 13 (1), 2 (2016).
9. Zheng, E.-H., Xiong, J.-J. and Luo, J.-L., “Second order sliding mode control for a quadrotor UAV,” ISA Trans. 53 (4), 13501356 (2014).
10. Sumantri, B., Uchiyama, N., Sano, S. and Kawabata, Y., “Robust tracking control of a quad-rotor helicopter utilizing sliding mode control with a nonlinear sliding surface,” J. Syst. Des. Dyn. 7 (2), 226241 (2013).
11. Xiao, B. and Yin, S., “A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles,” IEEE Trans. Ind. Inf. 13 (6), 29222932 (2017).
12. Huo, X., Huo, M. and Karimi, H. R., “Attitude stabilization control of a quadrotor UAV by using backstepping approach,” Math. Probl. Eng. 19 (2014).
13. Suicmez, E. C. and Kutay, A. T., “Path tracking control of a quadrotor UAV with backstepping method,” J. Aeronaut. Space Technol. 7 (2), 113 (2014).
14. Basri, M. A. M., Husain, A. R. and Danapalasingam, K. A., “Backstepping controller with intelligent parameters selection for stabilization of quadrotor helicopter,” J. Eng. Sci. Technol. Rev. 7 (2), 6674 (2014).
15. Bartolini, G., Fridman, L., Pisano, A. and Usai, E., “Modern sliding mode control theory,” Lecture Notes Control Inf. Sci. 375 (7), 2349 (2008).
16. Hallaj, M. A. A. and Assadian, N., “Sliding mode control of electromagnetic tethered satellite formation,” Adv. Space Res. 58 (4), 619634 (2016).
17. Turner, B., Williams, J., Shtessel, Y. and Adhami, R., “Integral Sliding Mode Autopilot for Rocket Stabilization with Unmatched Disturbances,” Proceedings of AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, USA (2012) p. 4466.
18. Rao, D. V. and Sinha, N. K., “A sliding mode controller for aircraft simulated entry into spin,” Aerosp. Sci. Technol. 28 (1), 154163 (2013).
19. Chen, C. T., “A sliding mode control strategy for robust temperature trajectory tracking of a batch reactor,” Chem. Eng. Commun. 201 (1), 122 (2014).
20. Zhong, C., Guo, Y., Zhou, C. and Chen, Q., “On sliding mode variable structure control for flexible spacecraft and chattering reduction,” Aerosp. Control Appl. 39 (2), 2327 (2013).
21. Pukdeboon, C., “Lyapunov optimizing sliding mode control for robot manipulators,” Appl. Math. Sci. 7 (63), 31233139 (2013).
22. Maria Joseph, F. O. and Podder, T., “Sliding mode control of a shape memory alloy actuated active flexible needle,” Robotica 36 (8), 11881205 (2018).
23. Guo, Z. Q., Xu, J. X. and Lee, T. H., “Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum,” J. Franklin Inst. 351 (4), 22612282 (2014).
24. Kennedy, J., Eberhart, R., “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Perth, WA, Australia (1995) pp. 1942–1948.
25. Abido, M., “Optimal design of power-system stabilizers using particle swarm optimization,” IEEE Trans. Energy Convers. 17 (3), 406413 (2002).
26. Rini, D. P., Shamsuddin, S. M. and Yuhaniz, S. S., “Particle swarm optimization: Technique, system and challenges,” Int. J. Comput. Appl. 14 (1), 1927 (2011).
27. Marinaki, M., Marinakis, Y. and Stavroulakis, G. E., “Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures,” Struct. Multidiscip. Optim. 43 (1), 2942 (2011).
28. Zuo, Z., “Trajectory tracking control design with command-filtered compensation for a quadrotor,” IET Control Theory Appl. 4 (11), 23432355 (2010).
29. Olfati-Saber, R., Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge, MA, USA, 2001).
30. Bouabdallah, S., Design and Control of Quadrotors with Application to Autonomous Flying Ph.D. Thesis (École Polytechnique Fédérale De Lausanne, Lausanne, EPFL, 2007).
31. Hassan, R., Cohanim, B., De Weck, O. and Venter, G., “A Comparison of Particle Swarm Optimization and the Genetic Algorithm,” Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference, Austin, TX, USA (2005).
32. Lalitha, M. P., Reddy, V. V. and Usha, V., “Optimal DG placement for minimum real power loss in radial distribution systems using PSO,” J. Theor. Appl. Inf. Technol. 13 (2), 107116 (2010).
33. Eberhart, R. C. and Shi, Y., “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization,” Proceedings of the IEEE Congress on Evolutionary Computation, La Jolla, CA, USA (2000) pp. 84–88.
34. Allaoua, B., Gasbaoui, B. and Mebarki, B., “Setting up PID DC motor speed control alteration parameters using particle swarm optimization strategy,” Leonardo Electron. J. Practices Technol. 14, 1932 (2009).
35. Voos, H., “Nonlinear Control of a Quadrotor Micro-UAV Using Feedback-Linearization,” IEEE International Conference on Mechatronics, Malaga, Spain (2009) pp. 1–6.
36. Waslander, S. L. and Wang, C., “Wind Disturbance Estimation and Rejection for Quadrotor Position Control,” AIAA Infotech@Aerospace Conference and AIAA Unmanned. . . Unlimited Conference, Seattle, WA, USA (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed