Skip to main content Accessibility help
×
×
Home

Design and kinematic characterization of a surgical manipulator with a focus on treating osteolysis

  • Ryan J. Murphy (a1) (a2), Michael D. M. Kutzer (a1), Sean M. Segreti (a3), Blake C. Lucas (a4) and Mehran Armand (a1) (a2)...
Summary

This paper presents a cable-driven dexterous manipulator with a large, open lumen. One specific application for the manipulator is the treatment of the degeneration of bone tissue (osteolysis) during a less-invasive hip revision surgery. Rigid tools used in traditional approaches limit the surgeons' ability to comprehensively treat the osteolysis due to the complex geometries of the lesion. The surgical scenario, testing, kinematic modeling, and image-based inverse kinematics are described. Testing shows 94% coverage of a lesion wall; the kinematic model describes manipulator notch positions within 0.15 mm, while the image-based inverse kinematics has 0.36 mm error. This manipulator is potentially useful in treating osteolytic lesions through (1) effective lesion exploration compared to conventional techniques, and (2) rapidly performing inverse kinematics from visual feedback.

Copyright
Corresponding author
*Corresponding author. E-mail: Ryan.Murphy@jhuapl.edu
References
Hide All
1. Clohisy, J. C., Calvert, G., Tull, F., McDonald, D. and Maloney, W. J., “Reasons for revision hip surgery: A retrospective review,” Clin. Orthop. Relat. Res. (429), 188192 (2004).
2. Engh, C. A. Jr., Egawa, H., Beykirch, S. E., Hopper, R. H. Jr. and Engh, C. A., “The quality of osteolysis grafting with cementless acetabular component retention,” Clin. Orthop. Relat. Res. 465, 150154 (2007).
3. Kutzer, M. D. M., Segreti, S. M., Brown, C. Y., Armand, M., Taylor, R. H. and Mears, S. C., “Design of a New Cable-Driven Manipulator with a Large Open Lumen: Preliminary Applications in the Minimally-invasive Removal of Osteolysis,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Shanghai, China (May 9–13, 2011), pp. 29132920.
4. Liu, W. P., Lucas, B. C., Guerin, K. and Plaku, E., “Sensor and Sampling-Based Motion Planning for Minimally Invasive Robotic Exploration of Osteolytic Lesions,” Proceedings of the IEEE/RSJ International Intelligent Robots and Systems (IROS) Conference, San Francisco, CA (Sep. 25–30, 2011) pp. 13461352.
5. Murphy, R. J., Moses, M. S., Kutzer, M. D. M., Chirikjian, G. S. and Armand, M., “Constrained Workspace Generation for Snake-Like Manipulators with Applications to Minimally Invasive Surgery,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Karlsruhe, Germany (May 6–10, 2013) pp. 53415347.
6. Sturges, R. and Laowattana, S., A Voice-Actuated, Tendon-Controlled Device for Endoscopy (MIT Press, Cambridge, MA, 1995) pp. 603617.
7. Furusho, J., Katsuragi, T., Kikuchi, T., Suzuki, H., Tanaka, H., Chiba, Y. and Horio, H., “Curved multi-tube systems for fetal blood sampling and treatments of organs like brain and breast,” Int. J. Comput. Assist. Radiol. Surg. 1, 223226 (2006).
8. Harada, K., Tsubouchi, K., Fujie, M. and Chiba, T., “Micro Manipulators for Intrauterine Fetal Surgery in an Open MRI,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Barcelona, Spain (Apr. 18–22, 2005) pp. 502507.
9. Sears, P. and Dupont, P., “Inverse Kinematics of Concentric Tube Steerable Needles,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Roma, Italy (Apr. 10–14, 2007) pp. 18871892.
10. Webster, R., Romano, J. and Cowan, N., “Mechanics of precurved-tube continuum robots,” IEEE Trans. Robot. 25 (1), 6778 (2009).
11. Dario, P., Carrozza, M., Marcacci, M., D'Attanasio, S., Magnami, B., Tonet, O. and Megali, G., “A novel mechatronic tool for computer-assisted arthroscopy,” IEEE Trans. Inf. Technol. Biomed. 4 (1), 1529 (2000).
12. Reynaerts, D., Peirs, J. and Van Brussel, H., “Shape memory micro-actuation for a gastro-intestinal intervention system,” Sensors Actuators 77 (2), 157166 (1999).
13. Hillel, A. T., Kapoor, A., Simaan, N., Taylor, R. H. and Flint, P., “Applications of robotics for laryngeal surgery,” Otolaryngol. Clin. North Am. 41 (4), 781791 (2008).
14. Simaan, N., Taylor, R. and Flint, P., “High Dexterity Snake-like Robotic Slaves for Minimally Invasive Telesurgery of the Upper Airway,” Medical Image Computing and Computer-Assisted Intervention. MICCAI 2004, LNCS 3217, 1724 (2004).
15. Simaan, N., Xu, K., Wei, W., Kapoor, A., Kazanzides, P., Taylor, R. and Flint, P., “Design and integration of a telerobotic system for minimally invasive surgery of the throat,” Int. J. Robot. Res. 28 (9), 11341153 (2009).
16. Peirs, J., Reynaerts, D., Van, H. Brussel, De Gersem, G. and Tang, H.-W., “Design of an Advanced Tool Guiding System for Robotic Surgery,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Taipei, Taiwan (Sep. 14–19, 2003) pp. 26512656.
17. Vaida, C., Plitea, N., Pisla, D. and Gherman, B., “Orientation module for surgical instruments: a systematical approach,” Meccanica 48 (1), 145158 (2013). [Online]. Available: http://link.springer.com/article/10.1007/s11012-012-9590-x
18. Degani, A., Choset, H., Wolf, A. and Zenati, M. A., “Highly Articulated Robotic Probe for Minimally Invasive Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA (May 15–19, 2006) pp. 41674172.
19. Ohashi, K., Hata, N., Matsumura, T., Ogata, T., Yahagi, N., Sakuma, I. and Dohi, T., “Stem cell harvesting device with passive flexible drilling unit for bone marrow transplantation,” IEEE Trans. Robot. Autom. 19 (5), pp. 810817 (2003).
20. Ikuta, K., Yamamoto, K. and Sasaki, K., “Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Taipei, Taiwan (Sep. 14–19, 2003) pp. 11031108.
21. Simaan, N., Taylor, R. and Flint, P., “A Dexterous System for Laryngeal Surgery,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, New Orleans, LA, USA (Apr. 26–May 1, 2004) pp. 351357.
22. Chirikjian, G. S. and Burdick, J. W., “The kinematics of hyper-redundant robot locomotion,” IEEE Trans. Robot. Autom. 11 (6) 781793 (1995).
23. Funda, J., Gruben, K., Eldridge, B., Gomory, S. and Taylor, R., “Control and Evaluation of a 7-axis Surgical Robot for Laparoscopy,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Nagoya, Japan (May 21–27, 1995), pp. 14771484.
24. Oberg, E., Jones, F. D., Horton, H. L. and Ryffel, H. H., Machinery's Handbook, 27th ed. (Industrial Press, Inc., New York, 2004) pp. 665677.
25. Armand, M., Kutzer, M. D. M., Brown, C. Y., Taylor, R. H. and Basafa, E., “Cable driven morphable manipulator and manufacturing method thereof,” U.S. Patent Pending (2011).
26. Segreti, S. M., Kutzer, M. D. M., Murphy, R. J. and Armand, M., “Cable Length Estimation for a Compliant Surgical Manipulator,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Saint Paul, MN, USA (May 14–18, 2012) pp. 701708.
27. Zhang, J., Roland, J. T., Manolidis, S. and Simaan, N., “Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery,” J. Med. Devices 3 (1), (2009). [Online]. Available: http://cat.inist.fr/?aModele=afficheN&cpsidt=21428530
28. Fletcher, R. and Powell, M., “A rapidly convergent descent method for minimization,” Comput. J. 6, 163168 (1963).
29. Goldfarb, D., “A family of variable metric updates derived by variational means,” Math. Comput. 24, 2326 (1970).
30. Sethian, J., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, 1999).
31. Caselles, V., Kimmel, R. and Sapiro, G., “Geodesic active contours,” Int. J. Comput. Vis. 22, 6179 (1997), 10.1023/A:1007979827043. [Online]. Available: http://dx.doi.org/10.1023/A:1007979827043
32. Lander, J., “Skin them bones: Game programming for the web generation,” Game Developer Mag. 5, 1116 (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed