Hostname: page-component-f7d5f74f5-5d7d4 Total loading time: 0 Render date: 2023-10-02T22:47:20.763Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Design and Manufacturing of Tendon-Driven Soft Foam Robots

Published online by Cambridge University Press:  15 May 2019

Nikolas Kastor*
Department of Mechanical Engineering, Tufts University, Medford, MA, USA. E-mail:
Ritwika Mukherjee
Department of Biology, Tufts University, Medford, MA, USA. E-mails:,
Eliad Cohen
Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, USA. E-mail:
Vishesh Vikas
Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA. E-mail:
Barry A. Trimmer
Department of Biology, Tufts University, Medford, MA, USA. E-mails:,
Robert D. White
Department of Mechanical Engineering, Tufts University, Medford, MA, USA. E-mail:
*Corresponding author. E-mail:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A design and manufacturing method is described for creating a motor tendon–actuated soft foam robot. The method uses a castable, light, and easily compressible open-cell polyurethane foam, producing a structure capable of large (~70% strain) deformations while requiring low torques to operate (<0.2 N·m). The soft robot can change shape, by compressing and folding, allowing for complex locomotion with only two actuators. Achievable motions include forward locomotion at 13 mm/s (4.3% of body length per second), turning at 9◦/s, and end-over-end flipping. Hard components, such as motors, are loosely sutured into cavities after molding. This reduces unwanted stiffening of the soft body. This work is the first demonstration of a soft open-cell foam robot locomoting with motor tendon actuators. The manufacturing method is rapid (~30 min per mold), inexpensive (under $3 per robot for the structural foam), and flexible, and will allow a variety of soft foam robotic devices to be produced.

© Cambridge University Press 2019 


Abidi, H. and Cianchetti, M., “On intrinsic safety of soft robots,Front. Robot. AI 4, 5 (2017).CrossRefGoogle Scholar
Laschi, C., Mazzolai, B. and Cianchetti, M., “Soft robotics: Technologies and systems pushing the boundaries of robot abilities,Sci. Robot. 1(1), eaah3690 (2016).CrossRefGoogle ScholarPubMed
Kim, S., Laschi, C. and Trimmer, B., “Soft robotics: A bioinspired evolution in robotics,Trend Biotechnol. 31(5), 287294 (2013).CrossRefGoogle ScholarPubMed
Trimmer, B. A., Lin, H.-T., Baryshyan, A. L., Leisk, G. G. and Kaplan, D. L., “Towards a biomorphic soft robot: Design constraints and solutions,” 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy (IEEE, 2012).Google Scholar
Rus, D. and Tolley, M. T., “Design, fabrication and control of soft robots,Nature 521(7553), 467475 (2015).CrossRefGoogle ScholarPubMed
Calisti, M., Picardi, G. and Laschi, C., “Fundamentals of soft robot locomotion,J. Royal Soc. Interface 14(130), 20170101 (2017).CrossRefGoogle ScholarPubMed
Tolley, M. T., Shepherd, R. F., Mosadegh, B., Galloway, K. C., Wehner, M., Karpelson, M., Wood, R. J. and Whitesides, G. M., “A resilient, untethered soft robot.Soft Robot. 1(3), 213223 (2014).CrossRefGoogle Scholar
Umedachi, T., Vikas, V. and Trimmer, B. A., “Softworms: The design and control of non-pneumatic, 3D-printed, deformable robots,Bioinspir. Biomim. 11(2), 025001 (2016).CrossRefGoogle ScholarPubMed
Cheng, N., Ishigami, G., Hawthorne, S., Chen, H., Hansen, M., Telleria, M., Playter, R. and Iagnemma, K., “Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator,2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA (2010).Google Scholar
Hiller, J. and Lipson, H., “Automatic design and manufacture of soft robots,IEEE Trans. Robot. 28(2), 457466 (2012).CrossRefGoogle Scholar
Lipson, H., “Challenges and opportunities for design, simulation, and fabrication of soft robots,Soft Robot. 1(1), 2127 (2014).CrossRefGoogle Scholar
Mac Murray, B. C., An, X., Robinson, S. S., van Meerbeek, I. M., O’Brien, K.W., Zhao, H. and Shepherd, R. F., “Poroelastic foams for simple fabrication of complex soft robots, Adv. Mater. 27(41), 63346340 (2015).CrossRefGoogle ScholarPubMed
Kastor, N., Vikas, V., Cohen, E. and White, R. D., “A definition of soft materials for use in the design of robots,Soft Robot. 4(3), 181182 (2017).CrossRefGoogle ScholarPubMed
Bac, C. W., van Henten, E. J., Hemming, J. and Edan, Y., “Harvesting robots for high-value crops: State-of-the-art review and challenges ahead,J. Field Robot. 31(6), 888911 (2014).CrossRefGoogle Scholar
Bac, C.W., Hemming, J., van Tuijl, B. A. J., Barth, R., Wais, E. and van Henten, E. J., “Performance evaluation of a harvesting robot for sweet pepper,J. Field Robot. 34(6), 11231139 (2017).CrossRefGoogle Scholar
Sarig, Y., “Robotics of fruit harvesting: A state-of-the-art review,J. Agric. Eng. Res. 54(4), 265280 (1993).CrossRefGoogle Scholar
Cianchetti, M., Laschi, C., Menciassi, A. and Dario, P., “Biomedical applications of soft robotics,Nat. Rev. Mater. 3, 143153 (2018).CrossRefGoogle Scholar
Jahanshahi, M. R., Shen, W.-M., Mondal, T. G., Abdelbarr, M., Masri, S. F. and Qidwai, U. A., “Reconfigurable swarm robots for structural health monitoring: A brief review.Int. J. Intell. Robot. Appl. 1(3), 287305 (2017).CrossRefGoogle Scholar
Chen, A., Yin, R., Cao, L., Yuan, C., Ding, H. K. and Zhang, W. J.. “Soft robotics: Definition and research issues.24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand (IEEE, 2017).Google Scholar
Hughes, J., Culha, U., Giardina, F., Guenther, F., Rosendo, A. and Iida, F., “Soft manipulators and grippers: A review,Front. Robot. AI 3, 69 (2016).CrossRefGoogle Scholar
Majidi, C., “Soft robotics: A perspective—current trends and prospects for the future,Soft Robot. 1(1), 511 (2014).CrossRefGoogle Scholar
Monkman, G., “Robotic compliance control using memory foams,Ind. Robot Int J. 18(4), 3132 (1991).CrossRefGoogle Scholar
Saldien, J., Goris, K., Verrelst, B., Van Ham, R., and Lefeber, D., “ANTY: The development of an intelligent huggable robot for hospitalized children.9th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Brussels, Belgium (2006).Google Scholar
Minato, T., Yoshikawa, Y., Noda, T., Ikemoto, S., Ishiguro, H. and Asada, M., “CB2: A child robot with biomimetic body for cognitive developmental robotics,” 2007 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, Pennsylvania, USA (IEEE, 2007).Google Scholar
Oh, J.-H., Hanson, D., Kim, W.-S., Han, Y., Kim, J.-Y. and Park, I.-W., “Design of android type humanoid robot albert HUBO,2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (IEEE, 2006).Google Scholar
Zeng, L. and Bone, G. M., “Design of foam covering for robotic arms to ensure human safety,” Canadian Conference on Electrical and Computer Engineering, CCECE 2008, Ontario, Canada (IEEE, 2008).Google Scholar
Hayashi, M., Yoshikai, T. and Inaba, M., “Development of a humanoid with distributed deformation sense with full-body soft plastic foam cover as flesh of a robot,J. Robot. Soc. Japan 26(8), 925931 (2008).CrossRefGoogle Scholar
Minato, T., Shimada, M., Ishiguro, H. and Itakura, S., “Development of an Android Robot for Studying Human–Robot Interaction,” 17th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Ottawa, Canada (Springer, 2004).Google Scholar
Saldien, J., Goris, K., Vanderborght, B., Vanderfaeillie, J. and Lefeber, D., “Expressing emotions with the social robot probo,Int J. Soc. Robot. 2(4), 377389 (2010).CrossRefGoogle Scholar
Bischoff, R. and Graefe, V., “Hermes—an intelligent humanoid robot designed and tested for dependability,2002 International Symposium on Experimental Robotics, Sant’Angelo d’Ischia, Italy (Springer, 2003) pp. 6474.Google Scholar
Goris, K., Saldien, J., Vanderniepen, I. and Lefeber, D., “The huggable robot probo, a multi-disciplinary research platform,International Conference on Research and Education in Robotics (EUROBOT), Heidelberg, Germany (Springer, 2008).Google Scholar
Ohmura, Y. and Kuniyoshi, Y., “Humanoid robot which can lift a 30 kg box by whole body contact and tactile feedback,IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, San Diego, CA, USA (IEEE, 2007).Google Scholar
Yamada, Y., Hirasawa, Y., Huang, S., Umetani, Y. and Suita, K., “Human–robot contact in the safeguarding space,IEEE/ASME Trans. Mech . 2(4), 230236 (1997).CrossRefGoogle Scholar
Hirata, K., Takimoto, T. and Tamura, K.. “Study on turning performance of a fish robot,First International Symposium on Aqua Bio-Mechanisms, Honolulu, Hawaii (2000).Google Scholar
Takagi, K., Yamamura, M., Luo, Z.-W., Onishi, M., Hirano, S., Asaka, K. and Hayakawa, Y., “Development of a rajiform swimming robot using ionic polymer artificial muscles,2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (IEEE, 2006).Google Scholar
Katzschmann, R. K., Marchese, A. D. and Rus, D., “Hydraulic autonomous soft robotic fish for 3D swimming,14th International Symposium on Experimental Robotics, Marrakech and Essaouira, Morocco (Springer, 2016).Google Scholar
Kamamichi, N., Yamakita, M., Asaka, K. and Luo, Z.-W., “A snake-like swimming robot using IPMC actuator/ sensor,Proceedings of 2006 IEEE International Conference on Robotics and Automation, ICRA, Orlando, FL, USA (IEEE, 2006).Google Scholar
Zhao, J., Zhang, X. and Pan, Q.. “A water walking robot inspired by water strider,IEEE International Conference on Mechatronics and Automation, Chengdu, China (2012).Google Scholar
Seok, S., Wang, A., Chuah, M. Y., Otten, D., Lang, J. and Kim, S., “Design principles for highly efficient quadrupeds and implementation on the MIT cheetah robot,2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (IEEE, 2013).Google Scholar
Daltorio, K. A., Horchler, A. D., Gorb, S., Ritzmann, R. E. and Quinn, R. D., “A small wall-walking robot with compliant, adhesive feet,2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2005), Alberta, Canada (IEEE, 2005).Google Scholar
Mac Murray, B. C., Futran, C. C., Lee, J., O’Brien, K. W., Amiri Moghadam, A. A., Mosadegh, B., Silberstein, M. N., Min, J. K. and Shepherd, R. F., “Compliant buckled foam actuators and application in patientspecific direct cardiac compression,Soft Robot. 5(1), 99108 (2018).CrossRefGoogle ScholarPubMed
Esser, F., Steger, T., Bach, D., Masselter, T. and Speck, T., “Development of novel foam-based soft robotic ring actuators for a biomimetic peristaltic pumping system,Conference on Biomimetic and Biohybrid Systems, Stanford, CA, USA (Springer, 2017).Google Scholar
Tang, C., Li, B., Bian, C., Li, Z., Liu, L. and Chen, H., “A locomotion robot driven by soft dielectric elastomer resonator,10th International Conference on Robotics and Automation (ICIRA), Wuhan, China (Springer, 2017).Google Scholar
Maeda, Y., Kodera, N. and Egawa, T.. “Caging-based grasping by a robot hand with rigid and soft parts,2012 IEEE International Conference on Robotics and Automation (ICRA), St. Paul, Minnesota, USA (IEEE, 2012).Google Scholar
Tedford, J. D., “Developments in robot grippers for soft fruit packing in New Zealand,Robotica 8(4), 279283 (1990).CrossRefGoogle Scholar
Galloway, K. C., Becker, K. P., Phillips, B., Kirby, J., Licht, S., Tchernov, D., Wood, R. J. and Gruber, D. F., “Soft robotic grippers for biological sampling on deep reefs,Soft Robot. 3(1), 2333 (2016).CrossRefGoogle ScholarPubMed
Buschmann, T., Lohmeier, S., Ulbrich, H. and Pfeiffer, F., “Dynamics simulation for a biped robot: Modeling and experimental verification,2006 IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, USA (IEEE, 2006).Google Scholar
Unver, O. and Sitti, M.. “A miniature ceiling walking robot with flat tacky elastomeric footpads,IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan (IEEE, 2009).Google Scholar
Xiao, J., Li, B., Ushiroda, K. and Song, Q., “Rise-rover: A wall-climbing robot with high reliability and loadcarrying capacity,” 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China (IEEE, 2015).Google Scholar
Voyles, R. M., “TerminatorBot: A robot with dual-use arms for manipulation and locomotion,IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA (IEEE, 2000).Google Scholar
Li, B., Ushiroda, K., Yang, L., Song, Q. and Xiao, J., “Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM,Int. J. Intel. Robot. Appl. 1(3), 255270 (2017).CrossRefGoogle Scholar
Van Meerbeek, I. M., Mac Murray, B. C., Kim, J. W., Robinson, S. S., Zou, P. X., Silberstein, M. N. and Shepherd, R. F., “Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines,Adv. Mater. 28(14), 28012806 (2016).CrossRefGoogle ScholarPubMed
Cheng, N. G., Gopinath, A., Wang, L., Iagnemma, K. and Hosoi, A. E., “Thermally tunable, self-healing composites for soft robotic applications,Macromol. Mater. Eng. 299(11), 12791284 (2014).CrossRefGoogle Scholar
Argiolas, A., Mac Murray, B. C., Van Meerbeek, I., Whitehead, J., Sinibaldi, E., Mazzolai, B. and Shepherd, R. F., “Sculpting soft machines,Soft Robot. 3(3), 101108 (2016).CrossRefGoogle Scholar
Michalowski, M. P., Sabanovic, S. and Michel, P., “Roillo: Creating a social robot for playrooms,15th IEEE International Symposium on Robot and Human Interactive Communication (ROMAN), Hatfield, United Kingdom (IEEE, 2006).Google Scholar
Donatelli, C. M., Serlin, Z. T., Echols-Jones, P., Scibelli, A. E., Cohen, A., Musca, J.-M., Rozen-Levy, S., Buckingham, D., White, R. and Trimmer, B. A., “Soft foam robot with caterpillar-inspired gait regimes for terrestrial locomotion,2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada (IEEE, 2017).Google Scholar
Bruce, J., Caluwaerts, K., Iscen, A., Sabelhaus, A. P. and SunSpiral, V., “Design and evolution of a modular tensegrity robot platform,” 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China (IEEE, 2014).Google Scholar
Bruce, J., Sabelhaus, A. P., Chen, Y., Lu, D., Morse, K. J., Milam, S., Caluwaerts, K., Agogino, A. M. and SunSpiral, V., “SUPERball: Exploring tensegrities for planetary probes,” 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Montreal, Canada (2014).Google Scholar
Chen, L.-H., Daly, M. C., Sabelhaus, A. P., van Vuuren, L. A. J., Garnier, H. J., Verdugo, M. I., Tang, E., Spangenberg, C. U., Ghahani, F., Agogino, A. M. and Agogino, A. K., “Modular elastic lattice platform for rapid prototyping of tensegrity robots,” 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, Ohio (ASME, 2017).Google Scholar
Juan, S. H. and Tur, J. M. M., “Tensegrity frameworks: Static analysis review,Mech. Mach. Theory 43(7), 859881 (2008).CrossRefGoogle Scholar
Skelton, R. T. and Sultan, C., “Controllable tensegrity: A new class of smart structures,In: Smart Structures and Materials 1997: Mathematics and Control in Smart Structures. (International Society for Optics and Photonics, San Diego, CA, USA, 1997).Google Scholar
Tur, J. M. M. and Juan, S. H., “Tensegrity frameworks: Dynamic analysis review and open problems,Mech. Mach. Theory. 44(1), 118 (2009).Google Scholar
Zappetti, D., Mintchev, S., Shintake, J. and Floreano, D., “Bio-inspired tensegrity soft modular robots,Conference on Biomimetic and Biohybrid Systems, Stanford, CA, USA (Springer, 2017).CrossRefGoogle Scholar
Johnson, M., Chen, Y., Hovet, S., Xu, S., Wood, B. J., Ren, H., Tokuda, J., Tse, Z. T. H., “Fabricating biomedical origami: A state-of-the-art review,Int. J. Comput. Assist. Radiol. Surg. 12(11), 20232032 (2017).CrossRefGoogle ScholarPubMed
Lebée, A., “From folds to structures, a review,Int. J. Space Struct. 30(2), 5574 (2015).CrossRefGoogle Scholar
Morris, E., McAdams, D. A. and Malak, R., “The state of the art of origami-inspired products: A review,” 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA (ASME, 2016).Google Scholar
Peraza-Hernandez, E. A., Hartl, D. J., Malak, R. J. Jr and Lagoudas, D. C., “Origami-inspired active structures: A synthesis and review,Smart Mater. Struct. 23(9), 094001 (2014).CrossRefGoogle Scholar
Rafsanjani, A. and Bertoldi, K., “Buckling-induced kirigami,Phys. Rev. Lett. 118(8), 084301 (2017).CrossRefGoogle ScholarPubMed
Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. and Bertoldi, K., “Kirigami skins make a simple soft actuator crawl,Sci. Robot. 3(15), eaar7555 (2018).CrossRefGoogle ScholarPubMed
Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K. and Dasgupta, P., “Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach,Soft Robot. 1(2), 122131 (2014).CrossRefGoogle Scholar
Wang, W., Kim, N.-G., Rodrigue, H. and Ahn, S.-H., “Modular assembly of soft deployable structures and robots,Mater. Horiz. 4(3), 367376 (2017).CrossRefGoogle Scholar
Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G. S., “Modular self-reconfigurable robot systems [grand challenges of robotics],IEEE Robot Autom. Mag. 14(1), 4352 (2007).CrossRefGoogle Scholar
Gibson, L. J. and Ashby, M. F., Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1999).Google Scholar
Ouellet, S., Cronin, D. and Worswick, M., “Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions,Polym. Test. 25(6), 731743 (2006).CrossRefGoogle Scholar
Zhang, J., Lin, Z., Wong, A., Kikuchi, N., Li, V. C., Yee, A. F. and Nusholtz, G. S., “Constitutive modeling and material characterization of polymeric foams,J. Eng. Mater. Tech. 119(3), 284291 (1997).CrossRefGoogle Scholar
Ashby, M. F. and Medalist, R. M., “The mechanical properties of cellular solids,Metall. Trans. A 14(9), 17551769 (1983).CrossRefGoogle Scholar
Piero, D. G. and Pampolini, G., “On the rate-dependent properties of open-cell polyurethane foams,1st International Conference on Material Modelling (ICMM), Westfalenhallen Dortmund, Germany (2009).Google Scholar
Faruque, O., Liu, N. N. and Chou, C. C., “Strain rate dependent foam-constituitive modeling and applications,” SAE Technical Paper (1997).CrossRefGoogle Scholar
Suzumori, K., Iikura, S. and Tanaka, H., “Development of flexible microactuator and its applications to robotic mechanisms,” 1991 IEEE International Conference on Robotics and Automation (ICRA), Sacramento, CA, USA (IEEE, 1991).Google Scholar
Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R. F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C. J. and Whitesides, G. M., “Pneumatic networks for soft robotics that actuate rapidly,Adv. Funct. Mater. 24(15), 21632170 (2014).CrossRefGoogle Scholar
Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P.W., Mazzeo, A. D., Cademartiri, L., Morin, S. A. and Whitesides, G.M., “Using explosions to power a soft robot,” Angew. Chem. 125(10), 29642968 (2013).CrossRefGoogle Scholar
Seok, S., Onal, C. D., Cho, K.-J., Wood, R. J., Rus, D. and Kim, S., “Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators,” IEEE/ASME Trans. Mech . 18(5), 14851497 (2013).Google Scholar
Lin, H.-T., Leisk, G. and Trimmer, B. A., “GoQBot: A caterpillar-inspired soft-bodied rolling robot,Bioinspir. Biomim. 6(2), 026007–21 (2011).CrossRefGoogle ScholarPubMed
Bahramzadeh, Y. and Shahinpoor, M., “A review of ionic polymeric soft actuators and sensors,Soft Robot. 1(1), 3852 (2014).CrossRefGoogle Scholar
Carpi, F., Kornbluh, R., Sommer-Larsen, P. and Alici, G., “Electroactive polymer actuators as artificial muscles: Are they ready for bioinspired applications?Bioinspir. Biomim. 6(4), 045006 (2011).CrossRefGoogle ScholarPubMed
Renda, F., Cianchetti, M., Giorelli, M., Arienti, A. and Laschi, C., “A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm,Bioinspir Biomim. 7(2), 025006 (2012).CrossRefGoogle ScholarPubMed
Hannan, M. W. and Walker, I. D., “Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots,J. Robot. Syst. 20(2), 4563 (2003).CrossRefGoogle ScholarPubMed
Lin, H. T. and Trimmer, B. A., “The substrate as a skeleton: Ground reaction forces from a soft-bodied legged animal,J. Exp. Biol. 213(7), 11331142 (2010).CrossRefGoogle ScholarPubMed
Park, Y.-L., Chen, B.-R., Pérez-Arancibia, N. O., Young, D., Stirling, L., Wood, R. J., Goldfield, E. C. and Nagpal, R., “Design and control of a bio-inspired soft wearable robotic device for ankle? Foot rehabilitation,” Bioinspir. Biomim. 9(1), 016007 (2014).CrossRefGoogle ScholarPubMed
Vikas, V., Cohen, E., Grassi, R., Sozer, C. and Trimmer, B., “Design and locomotion control of soft robot using friction manipulation and motor-tendon actuation,IEEE Transactions on Robotics 32 (4), 949959 (2016).CrossRefGoogle Scholar
Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M. and Dario, P., “Design of a biomimetic robotic octopus arm,Bioinspir. Biomim. 4(1), 015006 (2009).CrossRefGoogle ScholarPubMed
Vikas, V., Grover, P. and Trimmer, B., “Model-free control framework for multi-limb soft robots,2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany (IEEE, 2015).Google Scholar
Umedachi, T., Vikas, V. and Trimmer, B. A., “Highly deformable 3-d printed soft robot generating inching and crawling locomotions with variable friction legs,2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan (IEEE, 2013).Google Scholar