Skip to main content Accessibility help

Detection and Tracking of Moving Obstacles (DATMO): A Review

  • Ángel Llamazares (a1), Eduardo J. Molinos (a2) and Manuel Ocaña (a3)


Working with mobile robots, prior to execute the local planning stage, they must know the environment where they are moving. For that reason the perception and mapping stages must be performed previously. This paper presents a survey in the state of the art in detection and tracking of moving obstacles (DATMO). The aim of what follows is to provide an overview of the most remarkable methods at each field specially in indoor environments where dynamic obstacles can be potentially more dangerous and unpredictable. We are going to show related DATMO methods organized in three approaches: model-free, model-based and grid-based. In addition, a comparison between them and conclusions will be presented.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Vu, T.-D. and Aycard., O. “Laser-based Detection and Tracking Moving Objects Using Data-driven Markov Chain Monte Carlo,” In: ICRA (IEEE, 2009) pp. 3800–3806.
2. Nashashibi, F. and Bargeton., A. “Laser-based Vehicles Tracking and Classification Using Occlusion Reasoning and Confidence Estimation,” In: 2008 IEEE Intelligent Vehicles Symposium (June 2008) pp. 847–852.
3. Reid., D.An algorithm for tracking multiple targets,IEEE Transactions on Automatic Control 24(6), 843854 (1979).
4. Sittler., R. W.An optimal data association problem in surveillance theory,IEEE Transactions on Military Electronics 8(2), 125139 (1964).
5. Vo, B.-N. and Ma., W.-K.The Gaussian mixture probability hypothesis density filter,IEEE Transactions on Signal Processing 54(11), 40914104 (2006).
6. Vo, B.-N., Mallick, M., Bar-Shalom, Y., Coraluppi, S., Osborne III, R., Mahler, R. and Vo, B.-T., Multitarget Tracking (American Cancer Society, 2015) pp. 1–15.
7. Blackman, S. S., Dempster, R. J., Busch, M. T. and Popoli, R. F., “Imm/mht solution to radar benchmark tracking problem,IEEE Transactions on Aerospace and Electronic Systems 35(2), 730738 (1999).
8. Cox, I. J. and Hingorani, S. L., “An efficient implementation of Reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking,IEEE Transactions on Pattern Analysis and Machine Intelligence 18(2), 138150 (1996).
9. Fortmann, T., Bar-Shalom, Y. and Scheffe, M., “Sonar tracking of multiple targets using joint probabilistic data association,IEEE Journal of Oceanic Engineering 8(3), 173184 (1983).
10. Cox, I. J., “A review of statistical data association techniques for motion correspondence,International Journal of Computer Vision 10(1), 5366 (1993).
11. Kalman, R., “A new approach to linear filtering and prediction problems,Journal of Basic Engineering (ASME) 82(1), 3545 (1960).
12. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S., Langer, D., Levandowski, A., Levinson, J., Marcil, J., Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D., Vogt, A. and Thrun, S., Junior: The Stanford Entry in the Urban Challenge (Springer, Berlin, Heidelberg, 2009) pp. 91123.
13. Chen, X., Wang, X. and Xuan, J., Tracking multiple moving objects using unscented Kalman filtering techniques. CoRR, abs/1802.01235 (2018).
14. Doucet, A., Godsill, S. and Andrieu, C., “On sequential Monte Carlo sampling methods for Bayesian filtering,Statistics and Computing 10(3), 197208 (2000).
15. Blom, H. A. P. and Bar-Shalom, Y., “The interacting multiple model algorithm for systems with Markovian switching coefficients,IEEE Transactions on Automatic Control 33(8), 780783 (1988).
16. Andrieu, C., N. de Freitas, A. Doucet and M. I. Jordan, “An introduction to MCMC for machine learning,Machine Learning 50(1), 543 (2003).
17. Arras, K. O., Grzonka, S., Luber, M. and Burgard, W., “Efficient People Tracking in Laser Range Data Using a Multi-hypothesis Leg-tracker with Adaptive Occlusion Probabilities,In: ICRA (IEEE, 2008) pp. 17101715.
18. Schulz, D., Burgard, W., Fox, D. and B., A. Cremers, “Tracking Multiple Moving Targets with a Mobile Robot Using Particle Filters and Statistical Data Association,In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, ICRA 2001, Seoul, Korea (2001) pp. 16651670.
19. Topp, E. A. and Christensen, H. I., “Tracking for Following and Passing Persons,In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’05) , Edmonton, Alberta, Canada (2005) pp. 7076.
20. Wang, C.-C., Duggins, D., Gowdy, J., Kozar, J., MacLachlan, R., Mertz, C., Suppe, A. and Thorpe, C., Navlab Slammot Datasets (Carnegie Mellon University, 2004).
21. Zhao, L. and Thorpe, C., “Qualitative and Quantitative Car Tracking from a Range Image Sequence,In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 1998) pp. 496501.
22. Granström, K., Extended target tracking using PHD filters, PhD thesis, Linköping University (2012).
23. Chavez-Garcia, R. O. and Aycard, O., “Multiple sensor fusion and classification for moving object detection and tracking,IEEE Transactions on Intelligent Transportation Systems 17(2), 252534 (2015).
24. Friedman, J., Hastie, T. and Tibshirani, R., “Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors),Ann. Statist. 28(2), 337407 (2000).
25. Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E., Peters, S., Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Maheloni, K., Moyer, K., Jones, T., Buckley, R., Antone, M., Galejs, R., Krishnamurthy, S. and Williams, J., “A perception-driven autonomous urban vehicle,Journal of Field Robotics 25(10), 727774 (2008).
26. Mertz, C., Navarro-Serment, L. E., Duggins, D., Gowdy, J., MacLachlan, R., Rybski, P., Steinfeld, A., Suppe, A., Urmson, C., Vandapel, N., Hebert, M. and Thorpe, C., “Moving object detection with laser scanners,Journal of Field Robotics 30(1), 1743 (2013).
27. Wang, C.-C., Thorpe, C. and Thrun, S., “Online Simultaneous Localization and Mapping with Detection and Tracking of Moving Objects: Theory and Results from a Ground Vehicle in Crowded Urban Areas,In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan (2003).
28. Montesano, L., Minguez, J. and Montano, L., “Modeling the Static and the Dynamic Parts of the Environment to Improve Sensor-based Navigation,In: IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain (2005).
29. Miyasaka, T., Ohama, Y. and Ninomiya, Y., “Ego-motion Estimation and Moving Object Tracking using Multi-layer LIDAR,” In: Proceedings of the IEEE Intelligent Vehicles Symposium (2009) pp. 151–156.
30. Vu, T.-D., Burlet, J. and Aycard, O., “Grid-based localization and local mapping with moving object detection and tracking,Inf. Fusion 12(1), 5869 (2011).
31. Elfes, A., “Using occupancy grids for mobile robot perception and navigation,Computer 22(6), 4657 (1989).
32. Biswas, R., Limketkai, B., Sanner, S. and Thrun, S., “Towards Object Mapping in Non-stationary Environments with Mobile Robots,” In: 2002 IEEE/RSJ International Conference (2002) pp. 1014–1019.
33. Yang, S.-W. and Wang, C.-C., “Simultaneous egomotion estimation, segmentation, and moving object detection,J. Field Robotics 28(4), 565588 (2011).
34. Hähnel, D., Triebel, R., Burgard, W. and Thrun, S., “Map Building with Mobile Robots in Dynamic Environments,In: IEEE International Conference on Robotics and Automation (ICRA) (IEEE Computer Society Press, 2003).
35. Hähnel, D., Schulz, D. and Burgard, W., “Mobile robot mapping in populated environments,Advanced Robotics 17(7), 579597 (2003).
36. Tipaldi, G. D. and Ramos, F., “Motion Clustering and Estimation with Conditional Random Fields,” In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (October 2009) pp. 872–877.
37. van de Ven, J., Ramos, F. and Tipaldi, G. D., “An Integrated Probabilistic Model for Scan-matching, Moving Object Detection and Motion Estimation,In: ICRA(IEEE, 2010) pp. 887894.
38. Wang, D. Z., Posner, I. and Newman, P., “Model-free detection and tracking of dynamic objects with 2D LIDAR,Int. J. Rob. Res. 34(7), 10391063 (2015).
39. Coué, C., Pradalier, C., Laugier, C., Fraichard, T. and Bessiere, P., “Bayesian occupancy filtering for multitarget tracking: an automotive Application,Int. Journal of Robotics Research 25(1), 1930 (2006). voir basilic:
40. Dempster, A. P., “Upper and lower probabilities induced by a multivalued mapping,Ann. Math. Statist. 38(2), 325339 (1967).
41. Kurdej, M., Moras, J., Cherfaoui, V. and Bonnifait, P., Map-Aided Fusion Using Evidential Grids for Mobile Perception in Urban Environment (Springer, Berlin, Heidelberg, 2012) pp. 343350.
42. Moras, J., Cherfaoui, V. and Bonnifait, P., “Evidential Grids Information Management in Dynamic Environments,” In: 17th International Conference on Information Fusion (FUSION) (July 2014) pp. 1–7.
43. Saval-Calvo, M., Medina-Valds, L., Castillo-Secilla, J. M., Cuenca-Asensi, S., Martnez, A. and Villagr, J., “A review of the Bayesian occupancy filter,Sensors 17(2) (2017).
44. Fulgenzi, C., Autonomous navigation in dynamic uncertain environment using probabilistic models of perception and collision risk prediction. Thesis, Institut National Polytechnique de Grenoble - INPG (June 2009).
45. Tay, M. K., Mekhnacha, K., Yguel, M., Coué, C., Pradalier, C., Laugier, C. and Fraichard, T., The Bayesian Occupation Filter (Springer, Berlin, Heidelberg, 2008) pp. 7798.
46. Tay, M. K., Mekhnacha, K., Chen, C., Yguel, M. and Laugier, C., “An efficient formulation of the Bayesian occupation filter for target tracking in dynamic environments,International Journal of Vehicle Autonomous Systems 6(1-2), 155171 (2008).
47. Nègre, A., Rummelhard, L. and Laugier, C., “Hybrid Sampling Bayesian Occupancy Filter,” In: 2014 IEEE Intelligent Vehicles Symposium Proceedings (2014) pp. 1307–1312.
48. Adarve, J. D., Perrollaz, M., Makris, A. and Laugier, C., “Computing Occupancy Grids from Multiple Sensors using Linear Opinion Pools,IEEE International Conference on Robotics and Automation, St Paul, Minnesota, USA (2012).
49. Baig, Q., Perrollaz, M. and Laugier, C., “A robust motion detection technique for dynamic environment monitoring: A framework for grid-based monitoring of the dynamic environment,IEEE Robotics Automation Magazine 21(1), 4048 (2014).
50. Chen, C., Tay, C., Laugier, C. and Mekhnacha, K., “Dynamic Environment Modeling with Gridmap: A Multiple-object Tracking Application,In: 2006 9th International Conference on Control, Automation, Robotics and Vision (2006) pp. 16.
51. Yguel, M., Tay, C., Mekhnacha, K. and Laugier, C., Velocity Estimation on the Bayesian Occupancy Filter for Multi-Target Tracking, Research Report RR-5836, INRIA (2006).
52. Gindele, T., Brechtel, S., Schroder, J. and Dillmann, R., “Bayesian Occupancy Grid Filter for Dynamic Environments Using Prior Map Knowledge,” In: 2009 IEEE Intelligent Vehicles Symposium (2009) pp. 669–676.
53. Brechtel, S., Gindele, T. and Dillmann, R., “Recursive Importance Sampling for Efficient Grid-based Occupancy Filtering in Dynamic Environments,” In: 2010 IEEE International Conference on Robotics and Automation (2010) pp. 3932–3938.
54. Danescu, R., Oniga, F. and Nedevschi, S., “Modeling and tracking the driving environment with a particle-based occupancy grid,IEEE Transactions on Intelligent Transportation Systems 12(4), 13311342 (2011).
55. Nuss, D., Wilking, B., Wiest, J., Deusch, H., Reuter, S. and Dietmayer, K., “Decision-free True Positive Estimation with Grid Maps for Multi-object Tracking,” In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) (2013) pp. 28–34.
56. Mekhnacha, K., Mao, Y., Raulo, D. and Laugier, C., “Bayesian Occupancy Filter Based ‘Fast Clustering-Tracking’ Algorithm,In: IROS 2008, Nice, France (2008).
57. Yuan, T., Nuss, D. S., Krehl, G., Maile, M. and Gern, A., “Fundamental Properties of Dynamic Occupancy Grid Systems for Vehicle Environment Perception,” In: 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2015) pp. 153–156.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed