Skip to main content

Development and experimental evaluation of multi-fingered robot hand with adaptive impedance control for unknown environment grasping

  • Ting Zhang (a1) (a2), Li Jiang (a2), Shaowei Fan (a2), Xinyu Wu (a1) and Wei Feng (a1)...

This paper presents adaptive impedance controllers with adaptive sliding mode friction compensation for anthropomorphic artificial hand. A five-fingered anthropomorphic artificial hand with multi-sensory and Field-Programmable Gate Arra (FPGA)-based control hardware and software architecture is designed to fulfill the requirements of the grasping force controller. In order to improve the force-tracking precision, the indirect adaptive algorithm was applied to estimate the parameters of the environment. The generalized momentum-based disturbance observer was applied to estimate the contact force from the torque sensor. Based on the sensors of the finger, an adaptive sliding mode friction compensation algorithm was utilized to improve the accuracy of the position control. The performances of the force-tracking impedance controller and position-based joint impedance control for the five-fingered anthropomorphic artificial hand are analyzed and compared in this paper. Furthermore, the performances of the force-tracking impedance controller with environmental parameters adaptive estimation and without environmental parameters estimation are analyzed and compared. Experimental results prove that accurate force-tracking and stable torque/force response under uncertain environments of unknown stiffness and position can be achieved with the proposed adaptive force-tracking impedance controller with friction compensation on five-finger artificial hand.

Corresponding author
*Corresponding author. E-mail:
Hide All
1.Kawasaki, H., Komatsu, T. and Uchiyama, K., “Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II,” IEEE/ASME Trans. Mechatron. 7 (3), 296303 (2002).
2.Liu, H., Meusel, P., Hirzinger, G., Jin, M. H., Liu, Y. and Xie, Z. W., “The modular multisensory DLR-HIT-hand: Hardware and software architecture,” IEEE/ASME Trans. Mechatron. 13 (4), 461469 (2008).
3.Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M. C. and Dario, P., “Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications,” IEEE/ASME Trans. Mechatron. 12 (4), 418429 (2007).
4.Pons, J. L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S. and Moorleghem, W. V., “The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects,” Auton. Robots 16 (2), 143163 (2004).
5.Cipriani, C., Controzzi, M. and Carrozza, M. C., “Objectives, criteria and methods for the design of the SmartHand transradial prosthesis,” Robotica 28, 919927 (2010).
6.Johannes, M. S., Bigelow, J. D., Burck, J. M., Harshbarger, S. D., Kozlowski, M. V. and Dorens, T. V., “An overview of the developmental process for the modular prosthetic limb,” Johns Hopkins APL Tech. Dig. 30 (3), 207216 (2011).
7.Li, G. X., Liu, H. and Zhang, W. Z., “Development of multi-fingered robotic hand with coupled and directly self-adaptive grasp,” Int. J. Humanoid Robot. 9 (4), 1250034–1–18 (2012).
8.Pons, J. L., Ceres, R. and Pfeiffer, F., “Multifingered dextrous robotics hand design and control: A review,” Robotica 17, 661674, (1999).
9.Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R. and Bretthauer, G., “A hydraulically driven multifunctional prosthetic hand,” Robotica 23, 293299 (2005).
10.Kyberd, P., Light, C., Chappell, P. H., Nightingale, J. M., Whatley, D. and Evans, M., “The design of anthropomorphic prosthetic hands: A study of the southampton hand,” Robotica 19, 593600 (2001).
11.Heim, W., “Microprocessor technology for powered upper extremity prosthetic control systems,” Robotica 23, 275276 (2005).
12.Parmiggiani, A., Maggiali, M., Natale, L., Norl, F., Schmitz, A., Tsagarakis, N., Victor, J. S., Becchi, F., Sandini, G. and Metta, G., “The design of the iCub humanoid robot,” Int. J. Humanoid Robot. 9 (4), 1250027–1–24 (2012).
13.Huang, H., Pang, Y. J., Jiang, L., Fan, S. W., Wang, X. Q. and Liu, H., “Underactuated hand dynamic modeling, its real-time simulation, and control,” Int. J. Humanoid Robot. 7 (4), 609634 (2010).
14.Zhang, T., Jiang, L. and Liu, H., “A novel grasping force control strategy for multi-fingered prosthetic hand,” J. Cent. South Univ. 19 (6), 15371542 (2012).
15.Zhang, T., Fan, S. W., Liu, H. and Jiang, L., “Development and experiment analysis of anthropomorphic prosthetic hand with flexible three-axis tactile sensor,” Int. J. Humanoid Robot. 10 (3), 1350028–1–1350028–24 (2013).
16.Cutkosky, M. R., “On grasp choice, grasp models, and the design of hands for manufacturing tasks,” IEEE Trans. Robot. Autom. 5 (3), 269279 (1989).
17.Seraji, H. and Colbaugh, R., “Force Tracking in Impedance Control [C],” IEEE International Conference on Robotics and Automation, Georgia, IEEE Press (1993), pp. 499506.
18.Hogan, N., “Impedance control an approach to manipulation. I-Theory. II-Implementation. III-applications,” ASME Trans. J. Dyn. Syst. Meas. Control (ISSN 0022-0434), 107, 124 (1985).
19.Biagiotti, L., Liu, H., Hirzinger, G. and Melchiorri, C., “Cartesian Impedance Control for Dexterous Manipulation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, IEEE Press (2003) pp. 32703275.
20.Wei, R., Gao, X., Jin, M., Liu, Y., Liu, H., Seitz, N., Gruber, R. and Hirzinger, G., “FPGA based Hardware Architecture for HIT/DLR Hand,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, IEEE Press (2005) pp. 523528.
21.Erickson, D., Weber, M. and Sharf, I., “Contact stiffness and damping estimation for robotic systems [J],” Int. J. Robot. Res. 22 (1), 4157 (2003).
22.Seraji, H. and Colbaugh, R., “Force tracking in impedance control [J],” Int. J. Robot. Res. 16 (1), 97117 (1997).
23.Santis, D., Siciliano, B., Luca, A. D. and Bicchi, A., “An atlas of physical human–robot interaction [J],” Mech. Mach. Theory 43, 253270 (2008).
24.Lasky, T. and Hsia, T. C., “On Force-Tracking Impedance Control of Robot Manipulators [C],” IEEE International Conference on Robotics and Automation, Sacramento, IEEE Press (1991), pp. 274280.
25.Scherillo, P., Siciliano, B., Zollo, L., Carrozza, M., Guglielmelli, M. and Dario, P., “Parallel Force/Position Control of a Novel Biomechatronic Hand Prosthesis [C],” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, IEEE Press (2003), pp. 920925.
26.Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment [J],” IEEE Trans. Control Syst. Technol. 12 (3), 474483 (2004).
27.Dillon, G. and Horch, K., “Direct neural sensory feedback and control of a prosthetic arm [J],” IEEE Trans. Neural Syst. Rehabil. Eng. 13 (4), 468472 (2005).
28.Jung, S., Yim, S. B. and Hsia, T. C., “Experimental Studies of Neural Network Impedance Force Control for Robot Manipulators [C],” IEEE International Conference on Robotics and Automation, Seoul, IEEE Press (2001), pp. 34533458.
29.Kiguchi, K. and Fukuda, T., “Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks [J],” IEEE Trans. Ind. Electron. 47, 641649 (2000).
30.Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment [J],” IEEE Trans. Control Syst. Technol. 12 (3), 474483 (2004).
31.Tzafestas, C. S., Msirdi, N. K. and Manamani, N., “Adaptive impedance control applied to a pneumatic legged robot [J],” Int. J. Robot. Res. 20 (2–4), 105129 (1997).
32.Zhang, T., Liu, H., Jiang, L., Fan, S. and Yang, J., “Development of a flexible 3-D tactile sensor system for anthropomorphic artificial hand,” IEEE Sens. J. 13 (2), 510518 (2013).
33.Ohka, M., Mitsuya, Y., Higashioka, I. and Kabeshita, H., “An experimental optical three-axis tactile sensor for micro-robots,” Robotica 23, 457465 (2005).
34.Ohka, M., Mitsuya, Y., Matsunaga, Y. and Takeuchi, S., “Sensing characteristics of an optical three-axis tactile sensor under combined loading,” Robotica 22, 213221 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed