Skip to main content
×
×
Home

Distributed cooperative deployment of heterogeneous autonomous agents: a Pareto suboptimal approach

  • Giovanni Franzini (a1) and Mario Innocenti (a1)
Summary

The paper presents a distributed cooperative control law for autonomous deployment of a team of heterogeneous agents. Deployment problems deal with the coordination of groups of agents in order to cover one or more assigned areas of the operational space. In particular, we consider a team composed by agents with different dynamics, sensing capabilities, and resources available for the deployment. Sensing heterogeneity is addressed by means of the descriptor function framework, an abstraction that provides a set of mathematical tools for describing both agent sensing capabilities and the desired deployment. A distributed cooperative control law is then formally derived finding a suboptimal solution of a cooperative differential game, where the agents are interested in achieving the requested deployment, while optimizing the resources usage according to their dynamics. The control law effectiveness is proven by theoretical arguments, and supported by numerical simulations.

Copyright
Corresponding author
*Corresponding author. E-mail: franzigi@utrc.utc.com
References
Hide All
1. Bullo, F., Cortés, J. and Martínez, S., Distributed Control of Robotic Networks (Princeton University Press, Princeton, New Jersey, USA, 2009).
2. Cortés, J., Martínez, S., Karatas, T. and Bullo, F., “Coverage control for mobile sensing networks,” IEEE Trans. Robot. Autom. 20 (2), 243255 (2004). https://doi.org/10.1109/TRA.2004.824698.
3. Wang, X., Han, S., Wu, Y. and Wang, X., “Coverage and energy consumption control in mobile heterogeneous wireless sensor networks,” IEEE Trans. Autom. Control 58 (4), 975988 (2013). https://doi.org/10.1109/TAC.2012.2225511.
4. Carpin, S., Chung, T. H. and Sadler, B. M., “Theoretical Foundations of High-Speed Robot Team Deployment,” Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany (2013) pp. 2033–2040. https://doi.org/10.1109/ICRA.2013.6630849.
5. Dunbabin, M. and Marques, L., “Robots for environmental monitoring: Significant advancements and applications,” IEEE Robot. Autom. Mag. 19 (1), 2439 (2012). https://doi.org/10.1109/MRA.2011.2181683.
6. Albani, D., Nardi, D. and Trianni, V., “Field Coverage and Weed Mapping by UAV Swarms,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (Sep. 2017) pp. 4319–4325. https://doi.org/10.1109/IROS.2017.8206296.
7. Wang, Z.-J. and Li, W., “A solution to cooperative area coverage surveillance for a swarm of MAVs,” Int. J. Adv. Robot. Syst. 10 (12) (2013) pp. 398(1)398(8). https://doi.org/10.5772/56801.
8. Saeed, A., Abdelkader, A., Khan, M., Neishaboori, A., Harras, K. A. and Mohamed, A., “Argus: Realistic Target Coverage by Drones,” Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, Pittsburgh, PA, USA (2017) pp. 155–166. http://doi.acm.org/10.1145/3055031.3055078.
9. Aurenhammer, F., “Power diagrams: Properties, algorithms and applications,” SIAM J. Comput. 16 (1), 7896 (1987). https://doi.org/10.1137/0216006.
10. Emiris, I. Z. and Karavelas, M. I., “The predicates of the apollonius diagram: Algorithmic analysis and implementation,” Comput. Geom. 33, 1857 (2006). https://doi.org/10.1016/j.comgeo.2004.02.006.
11. Pimenta, L. C. A., Kumar, V., Mesquita, R. C. and Pereira, G. A. S., “Sensing and Coverage for a Network of Heterogeneous Robots,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (Dec. 2008) pp. 3947–3952. https://doi.org/10.1109/CDC.2008.4739194.
12. Bartolini, N., Calamoneri, T., La Porta, T. F. and Silvestri, S., “Autonomous deployment of heterogeneous mobile sensors,” IEEE Trans. Mobile Comput. 10 (6), 753766 (2011). https://doi.org/10.1109/TMC.2010.192.
13. Thanou, M., Stergiopoulos, Y. and Tzes, A., “Distributed Coverage Mobile Heterogeneous Networks in Non-Convex Environments,” Proceedings of the 21st Mediterranean Conference on Control and Automation, Platanias-Chania, Crete, Greece (Jun. 2013) pp. 956–962. https://doi.org/10.1109/MED.2013.6608837.
14. Boardman, B., Harden, T. and Martínez, S., “Limited Range Spatial Load Balancing for Multiple Robots,” Proceedings of the American Control Conference, Seattle, WA, USA (May 2017) pp. 2285–2290. https://doi.org/10.23919/ACC.2017.7963293.
15. Stergiopoulos, Y. and Tzes, A., “Autonomous Deployment of Heterogeneous Mobile Agents with Arbitrarily Anisotropic Sensing Patterns,” Proceedings of the 20th Mediterranean Conference on Control and Automation, Barcellona, Spain (Jul. 2012) pp. 1585–1590. https://doi.org/10.1109/MED.2012.6265865.
16. Stergiopoulos, Y. and Tzes, A., “Cooperative Positioning-Orientation Control of Mobile Heterogeneous Anisotropic Sensor Networks for Area Coverage,” Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China (May 2014) pp. 1106–1111. https://doi.org/10.1109/ICRA.2014.6906992.
17. Gusrialdi, A., Hatanaka, T. and Fujita, M., “Coverage Control for Mobile Networks with Limited-Range Anisotropic Sensors,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (Dec. 2008) pp. 4263–4268. https://doi.org/10.1109/CDC.2008.4739007.
18. Laventall, K. and Cortés, J., “Coverage Control by Robotic Networks with Limited-Range Anisotropic Sensory,” Proceedings of the American Control Conference, Seattle, WA, USA (Jun. 2008) pp. 2666–2671. https://doi.org/10.1109/ACC.2008.4586895.
19. Hexsel, B., Chakraborty, N. and Sycara, K., “Coverage Control for Mobile Anisotropic Sensor Networks,” Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China (May 2011) pp. 2878–2885. https://doi.org/10.1109/ICRA.2011.5980370.
20. Hexsel, B., Chakraborty, N. and Sycara, K., “Distributed coverage control for mobile anisotropic sensor networks,” Technical Report CMU-RI-TR-13-01, Robotics Institute, Pittsburgh, PA, USA (Jan. 2013).
21. Kantaros, Y., Thanou, M. and Tzes, A., “Visibility-Oriented Coverage Control of Mobile Robotic Networks on Non-Convex Regions,” Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China (Sep. 2014) pp. 1126–1131. https://doi.org/10.1109/ICRA.2014.6906995.
22. Avellar, G. S. C., Pereira, G. A. S., Pimenta, L. C. A. and Iscold, P., “Multi-UAV routing for area coverage and remote sensing with minimum time,” Sensors 15 (11), 2778327803 (2015). http://dx.doi.org/10.3390/s151127783.
23. Acevedo, J. J., Arrue, B. C., Maza, I. and Ollero, A., “Distributed approach for coverage and patrolling missions with a team of heterogeneous aerial robots under communication constraints,” Int. J. Adv. Robot. Syst. 10 (1), (2013) pp. 28(1)28(13). https://doi.org/10.5772/52765.
24. Acevedo, J. J., Arrue, B. C., Maza, I. and Ollero, A., “A Decentralized Algorithm for Area Surveillance Missions Using a Team of Aerial Robots with Different Sensing Capabilities,” Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China (May 2014) pp. 4735–4740. https://doi.org/10.1109/ICRA.2014.6907552.
25. Acevedo, J. J., Arrue, B. C., Maza, I. and Ollero, A., “A distributed algorithm for area partitioning in grid-shape and vector-shape configurations with multiple aerial robots,” J. Intell. Robot. Syst. 84 (1), 543557 (2016). https://doi.org/10.1007/s10846-015-0272-5.
26. Enright, J., Savla, K. and Frazzoli, E., “Coverage Control of Nonholomonic Agents,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (Dec. 2008) pp. 4250–4256. https://doi.org/10.1109/CDC.2008.4739379.
27. Mathew, G. and Surana, A., “A Static Coverage Algorithm for Locational Optimization,” Proceedings of the 51st IEEE Conference on Decision and Control, Maui, HI, USA (Dec. 2012) pp. 806–811. https://doi.org/10.1109/CDC.2012.6426561.
28. Luna, J. M., Fierro, R., Abdallah, C. T. and Wood, J., “An adaptive coverage control for deployment of nonholonomic mobile sensor networks over time-varying sensory functions,” Asian J. Control 15 (4), 9881000 (2013). http://dx.doi.org/10.1002/asjc.636.
29. Sharifi, F., Chamseddine, A., Mahboubi, H., Zhang, Y. and Aghdam, A. G., “A distributed deployment strategy for a network of cooperative autonomous vehicles,” IEEE Trans. Control Syst. Technol. 23 (2), 737745 (2015). https://doi.org/10.1109/TCST.2014.2341658.
30. Fabiani, F., Fenucci, D., Fabbri, T. and Caiti, A, “A distributed, passivity-based control of autonomous mobile sensors in an underwater acoustic network,” IFAC-PapersOnLine 49 (23), 367372 (2016). https://doi.org/10.1016/j.ifacol.2016.10.432.
31. Razak, R. A., Sukumar, S. and Chung, H., “Decentralized adaptive coverage control of nonholonomic mobile robots,” IFAC-PapersOnLine 49 (18), 410415 (2016). https://doi.org/10.1016/j.ifacol.2016.10.200.
32. Kwok, A. and Martínez, S., “Deployment algorithms for a power-constrained mobile sensor network,” Int. J. Robust Nonlinear Control 20 (7), 745763 (2010). http://dx.doi.org/10.1002/rnc.1464.
33. Ru, Y. and Martínez, S., “Coverage control in constant flow environments based on a mixed energy-time metric,” Automatica 49 (9), 26322640 (2013). https://doi.org/10.1016/j.automatica.2013.05.024.
34. Song, Y., Wang, B., Shi, Z., Pattipati, K. R. and Gupta, S., “Distributed algorithms for energy-efficient even self-deployment in mobile sensor networks,” IEEE Trans. Mobile Comput. 13 (5), 10351047 (2014). https://doi.org/10.1109/TMC.2013.46.
35. Moarref, M. and Rodrigues, L., “An optimal control approach to decentralized energy-efficient coverage problems,” IFAC Proc. Vol. 47 (3), 60386043 (2014). Proc. 19th IFAC World Congress, https://doi.org/10.3182/20140824-6-ZA-1003.01625.
36. Nguyen, M. T., Rodrigues, L., Maniu, C. S. and Olaru, S., “Discretized Optimal Control Approach for Dynamic Multi-Agent Decentralized Coverage,” Proceedings of the IEEE International Symposium on Intelligent Control, Buenos Aires, Argentina (Sep. 2016) pp. 335–340. https://doi.org/10.1109/ISIC.2016.7579984.
37. Nguyen, M. T., Stoica Maniu, C. and Olaru, S., “Optimization-based control for multi-agent deployment via dynamic Voronoi partition,” IFAC-PapersOnLine 50 (1), 18281833 (2017).https://doi.org/10.1016/j.ifacol.2017.08.185.
38. Niccolini, M., Innocenti, M. and Pollini, L., “Near Optimal Swarm Deployment Using Descriptor Functions,” Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA (May 2010) pp. 4952–4957. https://doi.org/10.1109/ROBOT.2010.5509984.
39. Ferrari Braga, A., Innocenti, M. and Pollini, L., “Multi-Agent Coordination with Arbitrarily Shaped Descriptor Function,” Proceedings of the AIAA Guidance, Navigation and Control Conference, Boston, MA, USA (Aug. 2013). https://doi.org/10.2514/6.2013-4996.
40. Niccolini, M., Pollini, L. and Innocenti, M., “Cooperative control for multiple autonomous vehicles using descriptor functions,” J. Sensor Actuator Netw. 3 (1), 2643 (2014). http://dx.doi.org/10.3390/jsan3010026.
41. Franzini, G., Aringhieri, S., Fabbri, T., Razzanelli, M., Pollini, L. and Innocenti, M., “Human-Machine Interface for Multi-Agent Systems Management using the Descriptor Function Framework,” In: Modelling and Simulation for Autonomous Systems, 3rd International Workshop, MESAS 2016, Rome, Italy, June 15–16. 2016, Revised Selected Papers (Hodicky, J., eds.) (Springer International Publishing, 2016) pp. 25–39. https://doi.org/10.1007/978-3-319-47605-6_3.
42. Niccolini, M., Swarm Abstractions for Distributed Estimation and Control Ph.D. Thesis (Pisa: University of of Pisa, Jul. 2011).
43. Engwerda, J., LQ Dynamic Optimization and Differential Games (John Wiley & Sons Ltd, Chichester, West Sussex, England, 2005).
44. Shoam, Y. and Leyton-Brown, K., Multiagent Systems – Algorithmic, Game-Theoretic, and Logical Foundations (Cambridge University Press, New York, USA, 2009).
45. Caiti, A., Fabbri, T., Fenucci, D. and Munafò, A., “Potential Games and AUVs Cooperation: First Results from the THESAURUS Project,” Proceedings of the MTS/IEEE OCEANS, Bergen, Norway (2013). https://doi.org/10.1109/OCEANS-Bergen.2013.6608165.
46. Marden, J. R., Arslan, G. and Shamma, J. S., “Cooperative control and potential games,” IEEE Trans. Syst., Man, Cybern. - Part B: Cybern. 39 (6), 13931407 (2009). https://doi.org/10.1109/TSMCB.2009.2017273.
47. Dürr, H.-B., Stanković, M. S. and Johansson, K. H., “Distributed Positioning of Autonomous Mobile Sensors with Application to Coverage Control,” Proceedings of the American Control Conference, San Francisco, CA, USA (Jun. 2008) pp. 4822–4827. https://doi.org/10.1109/ACC.2011.5991324.
48. Saridis, G. N. and Lee, C.-S. G., “An approximation theory of optimal control for trainable manipulators,” IEEE Trans. Syst. Man, Cybern. 9 (3), 152159 (1979). https://doi.org/10.1109/TSMC.1979.4310171.
49. Isidori, A., Nonlinear Control Systems, 3rd ed. (Springer-Verlag, London, 1995).
50. Hussein, I. I. and Stipanović, D. M., “Effective coverage control for mobile sensor networks with guaranteed collision avoidance,” IEEE Trans. Control Syst. Technol. 15 (4), 642657 (2007). https://doi.org/10.1109/TCST.2007.899155.
51. Stipanović, D. M., Hokayem, P. F., Spong, M. W. and Šiljak, D. D., “Cooperative avoidance control for multiagent systems,” J. Dyn. Syst. Meas. Control 129, 699707 (2007). https://doi.org/10.1115/1.2764510.
52. Beard, R. W., Saridis, G. N. and Wen, J. T., “Galerkin approximations of the Generalized Hamilton–Jacobi–Bellman equation,” Automatica 33 (12), 21592177 (1997). https://doi.org/10.1016/S0005-1098(97)00128-3.
53. Beard, R. W., Saridis, G. N. and Wen, J. T., “Approximate solutions to the time-invariant Hamilton–Jacobi–Bellman equation,” J. Optim. Theory Appl. 96 (3), 589626 (1998). https://doi.org/10.1023/A:1022664528457.
54. Park, C. and Tsiotras, P., “Approximations to Optimal Feedback Control Using a Successive Wavelet Collocation Algorithm,” Proceedings of the American Control Conference, Denver, CO, USA (Jun. 2003) pp. 1950–1955. https://doi.org/10.1109/ACC.2003.1243359.
55. Chen, Z. and Jagannathan, S., “Generalized Hamilton–Jacobi–Bellman formulation-based neural network control of affine nonlinear discrete-time systems,” IEEE Trans. Neural Netw. 19 (1), 90106 (2008). https://doi.org/10.1109/TNN.2007.900227.
56. Athans, M. and Falb, P. L., Optimal Control: An Introduction to the Theory and Its Applications (McGraw-Hill, New York, USA, 1966).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed