Skip to main content
    • Aa
    • Aa

Analysis of period-1 passive limit cycles for flexible walking of a biped with knees and point feet

  • Jae-Sung Moon (a1), Seong-Min Lee (a1), Joonbum Bae (a1) (a2) and Youngil Youm (a1)

In this paper, we investigate dynamic walking as a convergence to the system's own limit cycles, not to artificially generated trajectories, which is one of the lessons in the concept of passive dynamic walking. For flexible walking, gait transitions can be performed by moving from one limit cycle to another one, and thus, the flexibility depends on the range in which limit cycles exist. To design a bipedal walker based on this approach, we explore period-1 passive limit cycles formed by natural dynamics and analyze them. We use a biped model with knees and point feet to perform numerical simulations by changing the center of mass locations of the legs. As a result, we obtain mass distributions for the maximum flexibility, which can be attained from very limited location sets. We discuss the effect of parameter variations on passive dynamic walking and how to improve robot design by analyzing walking performance. Finally, we present a practical application to a real bipedal walker, designed to exhibit more flexible walking based on this study.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Ames A. D., “Human-inspired control of bipedal walking robots,” IEEE Trans. Autom. Control 59 (5), 11151130 (2014).
2. Aoi S. and Tsuchiya K., “Bifurcation and chaos of a simple walking model driven by a rhythmic signal,” Int. J. Non-Linear Mech. 41 (3), 438446 (2006).
3. Asano F. and Kawamoto J., “Modeling and analysis of passive viscoelastic-legged rimless wheel that generates measurable period of double-limb support,” Multibody Syst. Dyn. 31 (2), 111126 (2014).
4. Asano F. and Yamakita M., “Virtual gravity and coupling control for robotic gait synthesis,” IEEE Trans. Syst. Man Cybern. A 31 (6), 737745 (2001).
5. Chevallereau C., Abba G., Aoustin Y., Plestan F., Westervelt E. R., Canudas-de-Wit C. and Grizzle J. W., “RABBIT: A testbed for advanced control theory,” IEEE Control Syst. Mag. 23 (5), 5779 (2003).
6. Collins S. H., Ruina A., Tedrake R. and Wisse M., “Efficient bipedal robots based on passive-dynamic walkers,” Science 307 (5712), 10821085 (2005).
7. Dempster W. T. and Gaughran G. R. L., “Properties of body segments based on size and weight,” Am. J. Anat. 120 (1), 3354 (1967).
8. Garcia M., Chatterjee A., Ruina A. and Coleman M., “The simplest walking model: Stability, complexity, and scaling,” ASME J. Biomech. Eng. 120 (2), 281288 (1998).
9. Goswami A., Thuilot B. and Espiau B., “A study of the passive gait of a compass-like biped robot: Symmetry and chaos,” Int. J. Robot. Res. 17 (12), 12821301 (1998).
10. Grizzle J. W., Hurst J., Morris B., Park H.-W. and Sreenath K., “MABEL, a New Robotic Bipedal Walker and Runner,” Proceedings of the American Control Conference, St. Louis, MO (2009) pp. 2030–2036.
11. Grizzle J. W., Abba G. and Plestan F., “Asymptotically stable walking for biped robots: analysis via systems with impulse effects,” IEEE Trans. Autom. Control 46 (1), 5164 (2001).
12. Hirose M. and Kenichi O., “Honda humanoid robots development,” Phil. Trans. R. Soc. A 365 (1850), 1119 (2007).
13. Hobbelen D. G. E. and Wisse M., “Controlling the walking speed in limit cycle walking,” Int. J. Robot. Res. 27 (9), 9891005 (2008).
14. Hobbelen D. G. E. and Wisse M., Limit Cycle Walking. Humanoid Robots: Human-like Machines (Hackel M., ed.) (Vienna, Austria: I-Tech Education and Publishing, 2007).
15. Howell G. W. and Baillieul J., “Simple Controllable Walking Mechanisms which Exhibit Bifurcations,” Proceedings of the IEEE Conference Decision Control, Tampa, FL (1998) pp. 3027–3032.
16. Hurmuzlu Y. and Moskowitz G., “The role of impact in the stability of bipedal locomotion,” Dyn. Stabil. Syst. 1 (3), 217234 (1986).
17. Hurmuzlu Y. and Marghitu D. B., “Rigid body collisions of planar kinematic chains with multiple contact points,” Int. J. Robot. Res. 13 (1), 8292 (1994).
18. Hurst J. W. and Rizzi A. A., “Series compliance for an efficient running gait,” IEEE Robot. Autom. Mag. 15 (3), 4251 (2008).
19. Kaneko K., Kanehiro F., Morisawa M., Akachi K., Miyamori G., Hayashi A. and Kanehira N., “Humanoid Robot HRP-4 - Humanoid Robotics Platform with Lightweight and Slim Body,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots Systems, San Francisco, CA (Sep. 2011) pp. 4400–4407.
20. Karssen J. G. D. and Wisse M., “Running with improved disturbance rejection by using non-linear leg springs,” Int. J. Robot. Res. 30 (13), 15851595 (2011).
21. Kim J.-Y., Park I.-W. and Oh J.-H., “Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement,” Adv. Robot. 20 (6), 707736 (2006).
22. McGeer T., “Passive dynamic walking,” Int. J. Robot. Res. 9 (2), 6282 (1990).
23. Moon J.-S., “Stability Analysis and Control for Bipedal Locomotion using Energy Methods,” Ph.D. Dissertation (Urbana, IL: University of Illinois at Urbana-Champaign, 2011).
24. Moon J.-S. and Spong M. W., “Classification of periodic and chaotic passive limit cycles for a compass-gait biped with gait asymmetries,” Robotica 29 (7), 967974 (2011).
25. Moon J.-S., Stipanović D. M. and Spong M. W., “Gait generation and stabilization for nearly passive dynamic walking using auto-distributed impulses,” submitted, 2013.
26. Narukawa T., Masaki T. and Yoshida K., “Biped Locomotion on Level Ground by Torso and Swing-Leg Control based on Passive-Dynamic Walking,” Proceedings IEEE/RSJ International Conference on Intelligent Robots Systems, Edmonton, Canada (Aug. 2005) pp. 4009–4014.
27. Park I.-W., Kim J.-Y., Lee J. and Oh J.-H., “Mechanical design of the humanoid robot platform, HUBO,” Adv. Robot. 21 (11), 13051322 (2007).
28. Poulakakis I. and Grizzle J. W., “The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper,” IEEE Trans. Autom. Control 54 (8), 17791793 (2009).
29. Pratt G. and Justin M., “The DARPA robotics challenge,” IEEE Robot. Autom. Mag. 20 (2), 1012 (2013).
30. Spong M. W., Hutchinson S. and Vidyasagar M., Robot Modeling and Control (Wiley, Hoboken, NJ, 2006).
31. Sreenath K., Park H.-W., Poulakakis I. and Grizzle J. W., “A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL,” Int. J. Robot. Res. 30 (9), 11701193 (2011).
32. Strogatz S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley Pub., Reading, MA, 1994).
33. van Oijen T. P., Karssen J. G. D. and Wisse M., “The effect of center of mass offset on the disturbance rejection of running robots,” Int. J. Humanoid Robotics 10 (2), 122 (2013).
34. Vukobratović M. and Borovac B., “Zero-moment point – thirty five years of its life,” Int. J. Humanoid Robot. 1, 157173 (2004).
35. Vukobratović M. and Juričić D., “Contribution to the Synthesis of Biped Gait,” Proceedings IFAC Symposium Technical and Biological Problem on Control, Erevan, USSR (1968).
36. Vukobratović M. and Stepanenko Y., “On the stability of anthropomorphic systems,” Math. Biosci. 15, 137 (1972).
37. Yamakita M. and Asano F., “Extended passive velocity field control with variable velocity fields for a kneed biped,” Adv. Robot. 15 (2), 139168 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 291 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.