Skip to main content Accessibility help
×
Home

Efficient constant-velocity reconfiguration of crystalline robots**

  • Greg Aloupis (a1), Sébastien Collette (a2), Mirela Damian (a3), Erik D. Demaine (a4), Robin Flatland (a5), Stefan Langerman (a6), Joseph O'Rourke (a7), Val Pinciu (a8), Suneeta Ramaswami (a9), Vera Sacristán (a10) and Stefanie Wuhrer (a11)...

Summary

In this paper, we propose novel algorithms for reconfiguring modular robots that are composed of n atoms. Each atom has the shape of a unit cube and can expand/contract each face by half a unit, as well as attach to or detach from faces of neighboring atoms. For universal reconfiguration, atoms must be arranged in 2 × 2 × 2 modules. We respect certain physical constraints: each atom reaches at most constant velocity and can displace at most a constant number of other atoms. We assume that one of the atoms has access to the coordinates of atoms in the target configuration.

Our algorithms involve a total of O(n2) atom operations, which are performed in O(n) parallel steps. This improves on previous reconfiguration algorithms, which either use O(n2) parallel steps or do not respect the constraints mentioned above. In fact, in the settings considered, our algorithms are optimal. A further advantage of our algorithms is that reconfiguration can take place within the union of the source and target configuration space, and only requires local communication.

Copyright

Corresponding author

*Corresponding author. E-mail: aloupis.greg@gmail.com

Footnotes

Hide All
**

A short version appeared at WAFR 2008,2 with title Realistic reconfiguration of crystalline (and telecube) robots

Footnotes

References

Hide All
1.Aloupis, G., Benbernou, N., Damian, M., Demaine, E., Flatland, R., Iacono, J. and Wuhrer, S., “Efficient Reconfiguration of Lattice-Based Modular Robots,” European Conference on Mobile Robots, Mlini/Dubrovnik, Croatia, (Sep. 23–25, 2009a) pp. 8186.
2.Aloupis, G., Collette, S., Damian, M., Demaine, E. D., El-Khechen, D., Flatland, R., Langerman, S., O'Rourke, J., Pinciu, V., Ramaswami, S., Sacristán, V. and Wuhrer, S., “Realistic Reconfiguration of Crystalline and Telecube Robots. In: 8th International Workshop on the Algorithmic Foundations of Robotics (WAFR) (Chirikjian, G. S. et al. Eds.), Springer Tracts in Advanced Robotics, vol. 57, (2008a) pp. 433447.
3.Aloupis, G., Collette, S., Damian, M., Demaine, E. D., Flatland, R., Langerman, S., O'Rourke, J., Ramaswami, S., Sacristán, V. and Wuhrer, S., “Linear reconfiguration of cube-style modular robots,” Comput. Geom., Theor. Appl. 42 (6–7), 652663 (2009b).
4.Aloupis, G., Collette, S., Demaine, E. D., Langerman, S., Sacristán, V. and Wuhrer, S., “Reconfiguration of Cube-Style Modular Robots Using O(logn) Parallel Moves,” Proceedings of the International Symposium on Algorithms and Computation (ISAAC 2008), volume 5369 of LNCS, (2008b) pp. 342–353.
5.Aloupis, G., Collette, S., Demaine, E. D., Langerman, S., Sacristán, V. and Wuhrer, S., “Reconfiguration of 3D Crystalline Robots in O(logn) Parallel Steps. Technical Report arXiv:0908.2440 (2009c) p. 21.
6.Brener, N., Amar, F. B. and Bidaud, P., “Designing modular lattice systems with chiral space groups,” Int. J. Robot. Res. 27 (3–4), 279297 (2008).
7.Butler, Z., Byrnes, S. and Rus, D., “Distributed Motion Planning for Modular Robots with Unit-Compressible Modules,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, Hawaii, USA, vol. 2, (2001) pp. 790796.
8.Butler, Z., Fitch, R. and Rus, D., “Distributed control for unit-compressible robots: Goal-recognition, locomotion and splitting,” IEEE/ASME Trans. Mechatron. 7 (4), 418430 (2002).
9.Butler, Z., Kotay, K., Rus, D. and Tomita, K., “Generic decentralized control for lattice-based self-reconfigurable robots,” Int. J. Robot. Res. 23, 919937 (2004).
10.Butler, Z. and Rus, D., “Distributed planning and control for modular robots with unit-compressible modules,” Int. J. Robot. Res. 22 (9), 699715 (2003).
11.Chiang, C.-J. and Chirikjian, G., “Similarity metric with applications in modular robot motion planning,” Auton. Robots 10 (1), 91106 (2001).
12.Chirikjian, G., “Kinematics of a Metamorphic Robotic System,” Proceedings of the IEEE International Conference on Robotic Automation (May 8–13, 1994) pp. 449–455.
13.Chirikjian, G., Pamecha, A. and Ebert-Uphoff, I., “Evaluating efficiency of self-reconfiguration in a class of modular robots,” J. Robot. Syst. 13 (5), 317338 (1996).
14.Fukuda, T. and Nakagawa, S., “Approach to the dynamically reconigurable robotic system,” J. Intell. Robot. Syst. 1 (1), 5572 (1988).
15.Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y. and Endo, I., “Self-Organizing Collective Robots with Morphogenesis in a Vertical Plane,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Leuven, Belgium (May 16–20, 1998) pp. 28582863.
16.Jørgensen, M. W., Østergaard, E. H. and Lund, H. H., “Modular ATRON: Modules for a Self-Reconfigurable Robot,” Proceedings of the of the International Conference on Intelligient Robots and Systems (2004) pp. 2068–2073.
17.Kotay, K. and Rus, D., “Algorithms for Self-Reconfiguring Molecule Motion Planning,” Proceedings of the International Conference on Intelligent Robots and Systems, Kagawa University, Takamatsu, Japan (Oct. 30–Nov. 5, 2000) pp. 21842193.
18.Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T. and Murata, S., “Self-reconfigurable Modular Robot M-TRAN: Distributed Control and Communication,” In: RoboComm '07: Proceedings of the 1st International Conference on Robot Communication and Coordination, Piscataway, NJ, USA. (IEEE Press, 2007) pp. 17.
19.Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T. and Murata, S., “Distributed self-reconfiguration of M-TRAN III modular robotic system,” Int. J. Robot. Res. 27, 373386 (2008).
20.Murata, S. and Kurokawa, H., “Self-reconfigurable robots: Shape-changing cellular robots can exceed conventional robot flexibility,” IEEE Robot. Autom. Mag. 14 (1), 4352 (2007).
21.Murata, S., Kurokawa, H. and Kokaji, S., “Self-Assembling Machine,” Proceedings of the IEEE International Conferance Robotic Automation, San Diego, CA, USA (May 1994) pp. 441448.
22.Pamecha, A., Chiang, C., Stein, D. and Chirikjian, G., “Design and Implementation of Metamorphic Robots,” In: Proceedings of the ASME Design Engineering Technical Conference and Computers in Engineering Conference (McCarthy, J., ed.), Irvine, CA, (1996) pp. 110.
23.Pamecha, A., Ebert-Uphoff, I. and Chirikjian, G., “Useful metrics for modular robot motion planning,” IEEE Trans. Robot. Autom. 13 (4), 531545 (1997).
24.Reif, J. H. and Slee, S., “Optimal Kinodynamic Motion Planning for Self-Reconfigurable Robots Between Arbitrary 2D Configurations,” Robotics: Science and Systems Conference, Georgia Institute of Technology, Atlanta, GA, USA (June 27–30, 2007).
25.Rus, D. and Vona, M., “Crystalline robots: Self-reconfiguration with compressible unit modules,” Auton. Robot 10 (1), 107124 (2001).
26.Salemi, B., Will, P. and Shen, W.-M., “Distributed task negotiation in modular robots,” J. Robot. Soc. Japan, (Special Issue on “Modular Robots”) 21 (8), 3239 (2003).
27.Stoy, K., “Using cellular automata and gradients to control self-reconfiguration,” Robot. Auton. Syst. (Special issue IAS-04) 54, 135141 (2006).
28.Suh, J. W., Homans, S. B. and Yim, M., “Telecubes: Mechanical Design of a Module for Self-Reconfigurable Robotics,” Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC (May 11–15, 2002) pp. 40954101.
29.Ünsal, C., Kilite, H., Patton, M. and Khosla, P., “Motion Planning for a Modular Self-Reconfiguring Robotic System,” Proceedings of the 5th International Symposium on Distributed Autonomous Robotic Systems, Knoxville, Tennessee, USA (Oct. 4–6, 2000).
30.Vassilvitskii, S., Yim, M. and Suh, J., “A Complete, Local and Parallel Reconfiguration Algorithm for Cube Style Modular Robots,” Proceedings of the of the IEEE International Conference on Robotics and Automation (2002) pp. 117–122.
31.Walter, J. E., Tsai, E. M. and Amato, N. M., Choosing Good Paths for Fast Distributed Reconfiguration of Hexagonal Metamorphic Robots,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), (2002) pp. 102–109.
32.Yim, M., “New Locomotion Gaits,” Proceedings of the IEEE International Conference Robotic Automation, San Diego, CA, USA (May 1994).
33.Yim, M., Duff, D. G. and Roufas, K. D., “Polybot: A Modular Reconfigurable Robot.” Proceedings of the 2000 IEEE International Conference on Robotics and Automation (2000) pp. 514–520.
34.Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G. S., “Modular self-reconfigurable robots systems: Challenges and opportunities for the future,” IEEE Robot. Autom. Mag. 14 (1), 4352 (2007).
35.Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H. and Kokaji, S., “A self-reconfigurable modular robot: Reconfiguration planning and experiments,” Int. J. Robot. Res. 21 (10–11), 903915 (2002).

Keywords

Efficient constant-velocity reconfiguration of crystalline robots**

  • Greg Aloupis (a1), Sébastien Collette (a2), Mirela Damian (a3), Erik D. Demaine (a4), Robin Flatland (a5), Stefan Langerman (a6), Joseph O'Rourke (a7), Val Pinciu (a8), Suneeta Ramaswami (a9), Vera Sacristán (a10) and Stefanie Wuhrer (a11)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.