Skip to main content

Efficient motion generation for a six-legged robot walking on irregular terrain via integrated foothold selection and optimization-based whole-body planning

  • Yuan Tian (a1) and Feng Gao (a1)

In this paper, an efficient motion planning method is proposed for a six-legged robot walking on irregular terrain. The method provides the robot with fast-generated free-gait motions to traverse the terrain with medium irregularities. We first of all introduce our six-legged robot with legs in parallel mechanism. After that, we decompose the motion planning problem into two main steps: first is the foothold selection based on a local footstep cost map, in which both terrain features and the robot mobility are considered; second is a whole-body configuration planner which casts the problem into a general convex optimization problem. Such decomposition reduces the complexity of the motion planning problem. Along with the two-step planner, discussions are also given in terms of the robot-environmental relationship, convexity of constraints and robot rotation integration. Both simulations and experiments are carried out on typical irregular terrains. The results demonstrate effectiveness of the planning method.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Saranli, U., Buehler, M. and Koditschek, D. E., “RHex: A simple and highly mobile hexapod robot,” Int. J. Robot. Res. 20, 616631 (2001).
2. Kuffner, J. J. Jr, Nishiwaki, K., Kagami, S., Inaba, M. and Inoue, H., “Footstep Planning Among Obstacles for Biped Robots,” Proceedings of the Intelligent Robots and Systems, 2001, IEEE/RSJ International Conference on, (Maui, Hawaii, USA, 2001) pp. 500–505.
3. Ayaz, Y., Munawar, K., Malik, M. B., Konno, A. and Uchiyama, M., “Human-like approach to footstep planning among obstacles for humanoid robots,” Int. J. Humanoid Robot. 4, 125149 (2007).
4. Deits, R. and Tedrake, R., “Footstep Planning on Uneven Terrain with Mixed-integer Convex Optimization,” Proceedings of the Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on, (Madrid, Spain, 2014) pp. 279–286.
5. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M. and Schaal, S., “Learning, planning, and control for quadruped locomotion over challenging terrain,” Int. J. Robot. Res. 30, 236258 (2011).
6. Zucker, M. et al., “Optimization and learning for rough terrain legged locomotion,” Int. J. Robot. Res. 30, 175191 (2011).
7. Kolter, J. Z. and Ng, A. Y., “The stanford littledog: A learning and rapid replanning approach to quadruped locomotion,” Int. J. Robot. Res. 30, 150174 (2011).
8. Ozguner, F., Tsai, S. and McGhee, R., “An approach to the use of terrain-preview information in rough-terrain locomotion by a hexapod walking machine,” Int. J. Robot. Res. 3, 134146 (1984).
9. Belter, D. and Skrzypczyński, P., “Rough terrain mapping and classification for foothold selection in a walking robot,” J. Field Robot. 28, 497528 (2011).
10. Belter, D., “Optimization-based approach for motion planning of a robot walking on rough terrain,” J. Autom. Mobile Robot. Intell. Syst. 7, 3441 (2013).
11. Belter, D. and Skrzypczyński, P., “Posture Optimization Strategy for a Statically Stable Robot Traversing Rough Terrain,” Proceedings of the Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, (Vilamoura, Algarve, Portugal, 2012) pp. 2204–2209.
12. Masehian, E. and Sedighizadeh, D., “Classic and heuristic approaches in robot motion planning-a chronological review,” World Acad. Sci., Eng. Technol. 23, 101106 (2007).
13. Kavraki, L. E., Švestka, P., Latombe, J.-C. and Overmars, M. H., “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom. 12, 566580 (1996).
14. Kuffner, J. J. and LaValle, S. M., “RRT-connect: An Efficient Approach to Single-query Path Planning,” Proceedings of the Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on, (San Francisco, CA, USA, 2000) pp. 995–1001.
15. Hauser, K., Bretl, T., Latombe, J.-C., Harada, K., and Wilcox, B., “Motion planning for legged robots on varied terrain,” Int. J. Robot. Res. 27, 13251349 (2008).
16. Ratliff, N., Zucker, M., Bagnell, J. A. and Srinivasa, S., “CHOMP: Gradient Optimization Techniques for Efficient Motion Planning,” Proceedings of the Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, (Kobe, Japan, 2009) pp. 489–494.
17. Kolter, J. Z. and Ng, A. Y., “Task-Space Trajectories Via Cubic Spline Optimization,” in Proceedings of the Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, (2009) pp. 1675–1682.
18. Pan, Y. and Gao, F., “A new 6-parallel-legged walking robot for drilling holes on the fuselage,” Proc. Institution Mech. Eng., C: J. Mech. Eng. Sci.ence, 228 (4), 753764 (2013).
19. Du, H. and Gao, F., “Fault tolerance properties and motion planning of a six-legged robot with multiple faults,” Robotica FirstView, 1–18 (2016).
20. Parallel, J.-P. Merlet Robots, vol. 74, (Springer Science & Business Media, PO Box 17, 3300 AA Dordrecht, The Netherlands, 2012).
21. Belter, D., Labecki, P. and Skrzypczynśki, P., “Map-based Adaptive Foothold Planning for Unstructured Terrain Walking,” Proceedings of the Robotics and Automation (ICRA), 2010 IEEE International Conference on, (Anchorage, Alaska, USA, 2010) pp. 5256–5261.
22. Kolter, J. Z., Rodgers, M. P. and Ng, A. Y., “A Control Architecture for Quadruped Locomotion Over Rough Terrain,” Proceedings of the - IEEE International Conference on Robotics and Automation, (Pasadena, CA, USA, 2008) pp. 811–818.
23. Chen, W., Low, K. H. and Yeo, S. H., “Adaptive gait planning for multi-legged robots with an adjustment of center-of-gravity,” Robotica 17 391403 (1999).
24. Sorkine, O., “Least-squares rigid motion using svd,” Technical Notes 120, 3 (2009).
25. Xu, Y., Gao, F., Pan, Y. and Chai, X., “Method for six-legged robot stepping on obstacles by indirect force estimation,” Chinese J. Mech. Eng. 1–11 (2016).
26. Aps, M.. The MOSEK optimization software. Available:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Tian and Gao supplementary material

 Video (102.7 MB)
102.7 MB