Skip to main content

Evaluating concurrent design approaches for a Delta parallel manipulator

  • Salvador Botello-Aceves (a1), S. Ivvan Valdez (a2), Héctor M. Becerra (a1) and Eusebio Hernandez (a3)

This paper addresses the problem of optimal mechanisms design, for the geometric structure and control parameters of mechanisms with complex kinematics, which is one of the most intricate problems in contemporary robot modeling. The problem is stated by means of task requirements and performance constraints, which are specified in terms of the end-effector's position and orientation to accomplish the task. Usually, this problem does not fulfill the characteristics needed to use gradient-based optimization algorithms. In order to circumvent this issue, we introduce case studies of optimization models using evolutionary algorithms (EAs), which deal with the concurrent optimization of both: structure and control parameters. We define and review several optimization models based on the workspace, task and dexterity requirements, such that they guarantee an adequate performance under a set of operating and joint constraints, for a Delta parallel manipulator. Then, we apply several methodologies that can approximate optimal designs. Additionally, we compare the EAs with a quasi-Newton method (the BFGS), in order to show that the last kind of methods is not capable of solving the problem if the initial point is not very close to a local optimum. The results provide directions about the best state-of-the-art EA for addressing different design problems.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Park, J. H. and Asada, H., “Concurrent Design Optimization of Mechanical Structure and Control for High Speed Robots,” Proceedings of the American Control Conference (1993) pp. 2673–2679.
2. Navajas, G. H. T., Raad, J. A. P. and Prada, S. R., “Concurrent Design Optimization and Control of a Custom Designed Quadcopter,” Proceedings of the 16th International Conference on Research and Education in Mechatronics (2015) pp. 63–72.
3. Moulianitis, V. C., Synodinos, A. I., Valsamos, C. D. and Aspragathos, N. A., “Task-based optimal design of metamorphic service manipulators,” J. Mech. Robot. 8 (6), 061011 (2016).
4. Borboni, A., Bussola, R., Faglia, R., Magnani, P. L. and Menegolo, A., “Movement optimization of a redundant serial robot for high-quality pipe cutting,” J. Mech. Des. 130 (8), 082301 (2008).
5. Vijaykumar, R., Waldron, K. J. and Tsai, M. J., “Geometric optimization of serial chain manipulator structures for working volume and dexterity,” Int. J. Robot. Res. 5 (2), 91103 (1986).
6. Lum, M. J. H., Rosen, J., Sinanan, M. N. and Hannaford, B., “Optimization of a spherical mechanism for a minimally invasive surgical robot: Theoretical and experimental approaches,” IEEE Trans. Biomed. Eng. 53 (7), 14401445 (Jul. 2006).
7. Merlet, J. P. and Daney, D., “Appropriate Design of Parallel Manipulators,” In: Smart Devices and Machines for Advanced Manufacturing (Wang, L. and Xi, J., eds.) (Springer, 2008) pp. 125.
8. Ganesh, M., Bihari, B., Rathore, V., Kumar, D., Kumar, C., Sree, A., Sowmya, K. and Dash, A., “Determination of the closed-form workspace area expression and dimensional optimization of planar parallel manipulators,” Robotica 35 (10), 20562075 (2016).
9. Angeles, J. and Gosselin, C., “The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator,” ASME J. Mech., Trans. Autom. Des. 110, 3541 (1988).
10. Ottaviano, E. and Ceccarelli, M., “Optimal design of CaPaMan (Cassino Parallel Manipulator) with a specified orientation workspace,” Robotica 20 (02), 159166 (2002).
11. Zhang, D., Xu, Z., Mechefske, C. and Xi, F., “Optimum design of parallel kinematic toolheads with genetic algorithms,” Robotica 22 (1), 7784 (2004).
12. Carretero, J. A., Podhorodeski, R. P., Nahon, M. A. and Gosselin, C. M., “Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator,” ASME. J. Mech. Des. 122 (1), 1724 (1999).
13. Pittens, K. H. and Podhorodeski, R. P., “A family of stewart platforms with optimal dexterity,” J. Field Robot. 10 (4), 463479 (1993).
14. Lou, Y., Liu, G. and Li, Z., “Randomized optimal design of parallel manipulators,” IEEE Trans. Autom. Sci. Eng. 5 (2), 223233 (Apr. 2008).
15. Armada, M., Sanfeliu, A. and Ferre, M., “Dexterity optimization of a three degrees of freedom delta parallel manipulator,” Adv. Intell. Syst. Comput. 253, 719726 (2014).
16. Courteille, E., Deblaise, D. and Maurine, P., “Design Optimization of a Delta-Like Parallel Robot Through Global Stiffness Performance Evaluation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2009) pp. 5159–5166.
17. Miller, K., “Optimal design and modeling of spatial parallel manipulators,” Int. J. Robot. Res. 23 (2), 127140 (2004).
18. Lou, Y., Zhang, Y., Huang, R., Chen, X., and Li, Z., “Optimization algorithms for kinematically optimal design of parallel manipulators,” IEEE Trans. Autom. Sci. Eng. 11 (2), 574584 (2014).
19. Riaño, C., Peña, C. and Pardo, A., “Approach in the Optimal Development of Parallel Robot for Educational Applications,” Proceedings of the WSEAS International Conference on Recent Advances in Intelligent Control, Modelling and Simulation (ICMS) (WSEAS Press, Cambridge, MA, USA, 2014) p. 145.
20. Liu, X. J. and Wang, J., “A new methodology for optimal kinematic design of parallel mechanisms,” Mech. Mach. Theory 42 (9), 12101224 (2007).
21. Laribi, M. A., Romdhane, L. and Zeghloul, S., Advanced Synthesis of the DELTA Parallel Robot for a Specified Workspace (InTech, Rijeka, 2008) pp. 207224.
22. Lou, Y., Liu, G., Xu, J. and Li, Z., “A General Approach for Optimal Kinematic Design of Parallel Manipulators,” In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '04), vol. 4 (2004) pp. 3659–3664.
23. Chiaverini, S., “Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators,” IEEE Trans. Robot. Autom. 13 (3), 398410 (1997).
24. Ravichandran, T., Heppler, G. R. and Wang, D. W. L., Task-based Optimal Manipulator/Controller Design Using Evolutionary Algorithms, Technical Report (University of Waterloo, Ontario, Canada, 2004).
25. Reynoso-Meza, G., Sanchis, J., Blasco, X. and Martínez, M., “Algoritmos evolutivos y su empleo en el ajuste de controladores del tipo pid: Estado actual y perspectivas,” Rev. Iberoamer. Autom. Inf. Ind. 10 (3), 251268 (2013).
26. Xia, Y. and Wang, J., “A dual neural network for kinematic control of redundant robot manipulators,” IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 31 (1), 147154 (2001).
27. dos Santos, R. R., Steffen, V. and Saramago, S. F., “Optimal task placement of a serial robot manipulator for manipulability and mechanical power optimization,” Intell. Inform. Manag. 2 (9), 512525 (2010).
28. Clavel, R., “Delta, A Fast Robot with Parallel Geometry,” Proceedings of the 18th International Symposium on Industrial Robots, Lausanne (1988) pp. 91–100.
29. Mohamed, S., “Delta robot,”–2 (2012). [Online; upload 2012-12-04].
30. López, M., Castillo, E., García, G. and Bashir, A., “Delta robot: Inverse, direct, and intermediate jacobians,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 220 (1), 103109 (2006).
31. Larranaga, P. and Lozano, J. A., Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, vol. 2 (Springer Science & Business Media, New York, NY, 2002).
32. Schwefel, H. P. P., Evolution and Optimum Seeking: The Sixth Generation (John Wiley & Sons, Inc., New York, NY, USA, 1993).
33. Davis, L., Handbook of Genetic Algorithms (Van Nostrand, R., New York, NY, 1991).
34. Klanac, A. and Jelovica, J., “A Concept of Omni-Optimization for Ship Structural Design,” Advancements in Marine Structures, Proceedings of MARSTRUCT(2007)pp. 473–481.
35. Deb, K., “Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16 (John Wiley & Sons, Inc., New York, NY, USA, 2001).
36. Srinivas, N. and Deb, K., “Muiltiobjective optimization using nondominated sorting in genetic algorithms,” Evolut. Comput. 2 (3), 221248 (1994).
37. Valdez, S. I., Hernández, A. and Botello, S., “A Boltzmann based estimation of distribution algorithm,” Inf. Sci. 236, 126137 (2013).
38. Hansen, N., Niederberger, A., Guzzella, L. and Koumoutsakos, P., “A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion,” IEEE Trans. Evolut. Comput. 13 (1), 180197 (2009).
39. Klein, C. A. and Blaho, B. E., “Dexterity measures for the design and control of kinematically redundant manipulators,” Int. J. Robot. Res. 6 (2), 7283 (1987).
40. Pond, G. and Carretero, J. A., “Formulating jacobian matrices for the dexterity analysis of parallel manipulators,” Mech. Mach. Theory 41 (12), 15051519 (2006).
41. Gosselin, C. M., “Dexterity indices for planar and spatial robotic manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, Oh (May, 1990) pp. 650–655.
42. Efron, B. and Tibshirani, R. J., An Introduction to the Bootstrap (Chapman & Hall, New York, NY, 1994).
43. Nocedal, J. and Wright, S., Numerical Optimization (Springer Verlag, New York, NY, 2006).
44. Nelder, J. and Mead, R., “A simplex method for function minimization,” Comput. J. 7 (4), 308313 (1965).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed