Skip to main content

Focus on the mechatronics design of a new dexterous robotic hand for inside hand manipulation

  • P. Vulliez (a1), J. P. Gazeau (a1), P. Laguillaumie (a1), H. Mnyusiwalla (a1) and P. Seguin (a1)...

This paper presents a novel tendon-driven bio-inspired robotic hand design for in-hand manipulation. Many dexterous robot hands are able to produce adaptive grasping, but only a few human-sized hands worldwide are able to produce fine motions of the object in the hand. One of the challenges for the near future is to develop human-sized robot hands with human dexterity. Most of the existing hands considered in the literature suffer from dry friction which creates unwanted backlash and non-linearities. These problems limit the accurate control of the fingers and the capabilities of the hand. Such was the case with our first fully actuated dexterous robot hand: the Laboratoire de Mécanique des Solides (LMS) hand.

The mechanical design of the hand relies on a tendon-based transmission system. Developing a fully actuated dexterous robot hand requires the routing of the tendons through the finger for the actuation of each joint. This paper focuses on the evolution of the tendon routing; from the LMS hand to the new RoBioSS dexterous hand. The motion transmission in the new design creates purely linear coupling relations between joints and actuators. Experimental results using the same protocol for the previous hand and the new hand illustrate the evolution in the quality of the mechanical design. With the improvements of the mechanical behavior of the robotic fingers, the hand control software could be extensively simplified. The choice of a common architecture for all fingers makes it possible to consider the hand as a collaboration of four serial robots. Moreover, with the transparency of the motor-joint transmissions, we could use robust, industrial-grade cascaded feedback loops for the axis controls.

An inside-hand manipulation task concerning the manipulation of a bottle cap is presented at the end of the paper. As proof of the robustness of the hand, demonstrations of the hand's capabilities were carried out continuously over three days at SPS IPC Drives international exhibition in Nuremberg, in November 2016.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Gazeau, J. P., Zeghloul, S. and Ramirez, G., “Manipulation with a polyarticulated mechanical hand: A new efficient real-time method for computing fingertip forces for a global manipulation strategy,” Robotica 23, 479490 (2005).
2. Martin, J. and Grossard, M., “Design of a fully modular and backdrivable dexterous hand,” Int. J. Robot. Res. 33 (5), 783798 (Feb. 2014).
3. Company, S. R., “Design of a Dextrous Hand for advanced CLAWAR applications,” Proceedings of the International Conference on Climbing and Walking Robots and the Supporting Technologies for Mobile Machines, no. C (2003), pp. 691–698.
4. Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimböck, T., Hirzinger, G. and Siegwart, R., “The hand of the DLR hand arm system: Designed for interaction,” Int. J. Robot. Res. 31, 15311555 (2012).
5. Palli, G., Melchiorri, C., Vassura, G., Scarcia, U., Moriello, L., Berselli, G., Cavallo, A., De Maria, G., Natale, C., Pirozzi, S., May, C., Ficuciello, F. and Siciliano, B., “The DEXMART hand: Mechatronic design and experimental evaluation of synergy-based control for human-like grasping,” Int. J. Robot. Res. 33 (5), 799824 (Apr. 2014).
6. Falco, J., A Roadmap to Progress Measurement Science in Robot Dexterity and Manipulation (National Institute and of Standards Technology, US Department of Commerce, 2014)
7. Melchiorri, C. and Kaneko, M., “Robot hands,” In: Springer Handbook of Robotics (Siciliano, B. and Khatib, O., eds.) (Springer International, 2008).
8. Nguyen, K.-C. and Perdereau, V., “Fingertip Force Control for Grasping and In-Hand Manipulation,” HANDLE Training Workshop for Young Researchers and Ph.D. students, Benicassim, Spain (Feb. 2012).
9. Kumar, V., Xu, Z. and Todorov, E., “Fast, Strong and Compliant Pneumatic Actuation for Dexterous Tendon-Driven Hands,” Proceedings of IEEE International Conference on Robotics and Automation (2013).
10. Lovchik, C. and Diftler, M., “The Robonaut Hand: A Dexterous Robot Hand for Space,” Proceedings of IEEE International Conference on Robotics and Automation (1999).
11. Grossard, M., Martin, J. and Felippe, G., “Control-oriented design and robust decentralized control of the CEA dexterous robot hand,” IEEE/ASME Trans. Mechatron. 20 (4), 2015.
12. Cui, L., Sun, J. and Dai, J., “In-hand forward and inverse kinematics with rolling contact,” Robotica 35 (12), 23812399 (2017). doi:10.1017/S026357471700008X.
13. Namiki, Akio, Imai, Yoshiro, Ishikawa, Masatoshi and Kaneko, Makoto, “Development of a High-speed Multifingered Hand System and Its Application to Catching,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas (Oct. 30, 2003) pp. 2666–2671.
14. Bundhoo, V. and Park, E., Design of An Artificial Muscle Actuated Finger Towards Biomimetic Prosthetic Hands,” Proceedings of the 12th International Conference on Advanced Robotics, 2005 (2005) pp. 368–375.
15. Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai, L., and Cipriani, C., “Design of a cybernetic hand for perception and action,” Biol. Cybern. 95, 629644 (2006).
16. Kurita, Y., Ono, Y., Ikeda, A. and Ogasawara, T., “Human-sized anthropomorphic robot hand with detachable mechanism at the wrist,” Mech. Mach. Theory 46, 5366 (2011).
17. Xu, Z., Kumar, V. and Todorov, E., “A low-cost and modular, 20-DOF anthropomorphic robotic hand: Design, actuation and modeling,” 13th IEEE-RAS International Conference on Humanoid Robots (2013) pp. 368–375.
18. Birglen, L., Laliberté, T. and Gosselin, C., Underactuated Robotic Hands(Springer Tracts in Advanced Robotics), vol. 40 (Springer International, 2008).
19. Odhner, L. and Dollar, A., “Dexterous Manipulation with Underactuated Elastic Hands,” Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai (May 9–13, 2011) pp. 52545260.
20. Carrozza, M. C., Suppo, C., Sebastiani, F., Massa, B., Vecchi, F., Lazzarini, R., Cutkosky, M. R., and Dario, P., “The spring hand: Development of a self-adaptive prosthesis for restoring natural grasping,” Autonomous Robots 16, 125141 (2004).
21. Gazeau, J. P., Zeghloul, S., Arsicault, M. and Lallemand, J. P., “The LMS Hand: Force and Position Controls in the Aim of the Fine Manipulation of Objects,” Proceedings of the IEEE International Conference on Robotics and Automation (2001), pp. 2642–2648, vol. 3.
22. CNRS, “Doigt robotique modulaire pour la prehension et la manipulation dextre,” Patent FR 1459956, 10 16, 2014.
23. Mnyusiwalla, H., Vulliez, P., Gazeau, J. P. and Zeghloul, S., “A new dexterous hand based on bio-inspired finger design for inside-hand manipulation,” IEEE Trans. Syst., Man, Cybern.: Syst. 46 (6), 809817 (2016).
24. Biagiotti, L., Lotti, F., Melchiorri, C. and Vassura, G., How Far Is the Human Hand? A Review on Anthropomorphic Robotic End-effectors, (DIES Internal Rep., Tech. Rep., Univ. Bologna, Italy, 2004).
25. Lee, Y.-H. and Lee, J.-J., “Modeling of the dynamics of tendon-driven robotic mechanisms with flexible tendons,” Mech. Mach. Theory 38 (12), 14311447 (Dec. 2003).
26. Daoud, N., Gazeau, J., Zeghloul, S. and Arsicault, M., “A real-time strategy for dexterous manipulation: Fingertips motion planning, force sensing and grasp stability,” Robot. Auton. Syst. 60 (3), 377386 (Mar. 2012).
27. The RoBioSS hand in Nuremberg SPS-IPC International Exhibit:
28. The RoBioSS hand video cited in the newspaper “Le Monde” (Keywords: Le Monde – Gazeau) follow the link:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 97 *
Loading metrics...

* Views captured on Cambridge Core between 8th May 2018 - 23rd May 2018. This data will be updated every 24 hours.