Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T10:47:17.428Z Has data issue: false hasContentIssue false

Force and velocity observers for the control of cooperative robots1

Published online by Cambridge University Press:  01 January 2008

Juan C. Martínez-Rosas*
Affiliation:
División de Ingeniería Eléctrica de la Facultad de Ingeniería, Departamento de Control y Robótica, Universidad Nacional Autónoma de México, Apdo. Postal 70-256, México, D.F. 04510, México
Marco A. Arteaga
Affiliation:
División de Ingeniería Eléctrica de la Facultad de Ingeniería, Departamento de Control y Robótica, Universidad Nacional Autónoma de México, Apdo. Postal 70-256, México, D.F. 04510, México
*
*Corresponding author. E-mail: juan_carlos@verona.fi-p.unam.mx

Summary

In this paper, we design a position/force controller for cooperative robots during constrained motion. The proposed scheme is based on the knowledge of the manipulator dynamics and does not require measurements of link velocity or end-effector contact forces. A well-known velocity observer and the design of a force observer are used. The validity of the proposed method is verified by means of experimental results.

Type
Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This work is based on research supported by the CUDI, by the DGAPA–UNAM under Grants IN119003 and IN109306, and by the CONACYT.

References

1.Siciliano, B. and Villani, L., Robot Force Control (Kluwer Academic Norwell, MA, 1999).CrossRefGoogle Scholar
2.Cheah, C. C., Kawamura, S. and Arimoto, S., “Stability of hybrid position and force control for robotic manipulator with kinematics and dynamics uncertainties,” Automatica 39, 847855 (2003).CrossRefGoogle Scholar
3.Chiu, C.-S., Lian, K.-Y. and Wu, T.-C., “Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators,” Automatica 40, 21112119 (2004).Google Scholar
4.Whitney, D. E., “Historical perspective and state of the art in robot force control,” Int. J. Robot. Res., 6 (1), 313 (1987).CrossRefGoogle Scholar
5.McClamroch, H. and Wang, D., “Feedback stabilization and tracking of constrained robots,” IEEE Trans. Autom. Control 33, 419426 (1988).CrossRefGoogle Scholar
6.Khalil, H. K., Nonlinear Systems 2nd ed. (Prentice-Hall. Englewood Cliffs, New Jersey, 2002).Google Scholar
7.Huang, H.-P. and Tzeng, W. L., “Robotic Force Control by Using Estimated Contact Force,” Proceedings of the 28th Conference on Decision and Control, IEEE, Tampa, Florida, (1989) pp. 2158–2163.Google Scholar
8.Huang, H.-P. and Tzeng, W. L., “Asymptotic Observer Design for Constrained Robot System,” IEE Proceedings, Part D, vol. 138, Florida (1991) pp. 211–216.Google Scholar
9.Gudiño-Lau, J., Arteaga-Pérez, M. A., Muñoz, L. A. and Parra–Vega, V., “On the control of cooperative robots without velocity measurements,” IEEE Trans. Control Sys. Technol. 12 (4), 600608 (2004).CrossRefGoogle Scholar
10.Gudiño-Lau, J. and Arteaga-Pérez, M. A., “Dynamic model and simulation of cooperative robots: A case study,” Robotica 23, 615624 (2005).CrossRefGoogle Scholar
11.Martínez-Rosas, J. C., Arteaga-Pérez, M. A. and Castillo-Sánchez, A. M., “Decentralized control of cooperative robots without velocity-force measurements,” Automatica 42, 329336 (2006).CrossRefGoogle Scholar
12.Arteaga Pérez, M. A. and Kelly, R., “Robot control without velocity measurements: New theory and experimental results,” IEEE Trans. Robot. Autom. 20 (2), 297308 (2004).CrossRefGoogle Scholar
13.Raibert, M. H. and Craig, J. J., “Hybrid position/force control of manipulators,” ASME J. Dyn. Syst. Meas. Control 102, 126133 (1981).CrossRefGoogle Scholar
14.Queiroz, M. S. de, Dawson, D. M. and Burg, T., “Position/Force Control of Robot Manipulators Without Velocity/Force Measurements,” Proceedings of the IEEE Conference on Robotics and Automation, Minneapolis, Minnesota (1996) pp. 2561–2566.Google Scholar
15.Queiroz, M. S. de, Hu, J., Dawson, D. M., Burg, T. and Donepudi, S. R., “Adaptive position/force control of robot manipulators without velocity measurements: Theory and experimentation,” IEEE Trans. Syst., Man, Cybern., 27 (5), 796808 (1997).CrossRefGoogle ScholarPubMed
16.Vidyasagar, M., “On the stabilization of nonlinear systems using state detection,” IEEE Trans. Autom. Control 3, 504509 (1980).CrossRefGoogle Scholar
17.Parra-Vega, V., Rodriguez-Ángeles, S., Arimoto, S. and Hirzinger, G., “High precision constrained grasping with cooperative adaptive hand control,” J. Intell. Robot. Syst. 32, 235254 (2001).CrossRefGoogle Scholar
18.Liu, Y. H. and Arimoto, S., “Implicit and Explicit Force Controllers for Rheo–Holonomically Constrained Manipulators and Their Extension to Distributed Cooperation Control,” Proceedings of the IFAC 13th Triennial World Congress, San Francisco, California, December (1996) pp. 618–623.Google Scholar
19.Liu, Y.-H., Arimoto, S., Parra-Vega, V. and Kitagaki, K., “Decentralized adaptive control of multiple manipulators in cooperations,” Int. J. Control 67 (5), 649673 (1997).CrossRefGoogle Scholar