Skip to main content

Forward projection model of non-central catadioptric cameras with spherical mirrors

  • Nuno Goncalves (a1), Ana Catarina Nogueira (a1) and Andre Lages Miguel (a1)

Non-central catadioptric vision is widely used in robotics and vision but suffers from the lack of an explicit closed-form forward projection model (FPM) that relates a 3D point with its 2D image. The search for the reflection point where the scene ray is projected is extremely slow and unpractical for real-time applications. Almost all methods thus rely on the assumption of a central projection model, even at the cost of an exact projection.

Two recent methods are able to solve this FPM, presenting a quasi-closed form FPM. However, in the special case of spherical mirrors, further enhancements can be made. We compare these two methods for the computation of the FPM and discuss both approaches in terms of practicality and performance. We also derive new expressions for the FPM on spherical mirrors (extremely useful to robotics and graphics) which speed up its computation.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Agrawal, A., Taguchi, Y. and Ramalingam, S., “Analytical Forward Projection for Axial Non-Central Dioptric and Catadioptric Cameras,” European Conference on Computer Vision (ECCV), Springer Berlin Heidelberg, Heraklion, Greece (Sep. 2010), pp. 129143.
2. Agrawal, A., Taguchi, Y. and Ramalingam, S., “Beyond Alhazen's Problem: Analytical Projection Model for Non-Central Catadioptric Cameras with Quadric Mirrors,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, US (2011), pp. 29933000.
3. Baker, M., “Alhazen's problem,” Am. J. Math. 4 (1), 327331 (1881).
4. Barreto, J. and Araujo, H., “Geometric properties of central catadioptric line images and their application in calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 27 (8) (2005) 13271333.
5. Bjorke, K., “Finite-Radius Sphere Environment Mapping,” In: GPU Gems – Programming Techniques, Tips, and Tricks for Real-Time Graphics (Addison-Wesley, 2004) ISBN: 0-321-22832-4.
6. Blinn, J. F. and Newell, M. E., “Texture and reflection in computer generated images,” Commun. ACM 19 (10), 542547 (1976).
7. Born, M. and Wolf, E., Principles of Optics (Pergamon Press, Oxford, UK, 1965).
8. Chen, M. and Arvo, J., “Perturbation methods for interactive specular reflections,” IEEE Trans. Vis. Comput. Graph. 6, 253264 (2000).
9. Chen, M. and Arvo, J., “Theory and application of specular path perturbation,” ACM Trans. Graph. 19 (4), 246278 (2000).
10. Dias, T., Miraldo, P., Goncalves, N. and Lima, P., “Augmented Reality on Robot Navigation using Non-Central Catadioptric Cameras,” IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS, Hamburg, Germany (Sep. 2015), pp. 49995004.
11. Ding, Y., Yu, J. and Sturm, P. F., “Multiperspective Stereo Matching and Volumetric Reconstruction,” In: Proceedings of the International Conference on Computer Vision (ICCV) Kyoto, Japan (Sep. 2009), pp. 1827–1834.
12. Dupont, L., Lazard, D., Lazard, S. and Petitjean, S., “Near-optimal parameterization of the intersection of quadrics: I. The generic algorithm,” J. Symb. Comput. 43 (3), 168191 (2008).
13. Estalella, P., Martin, I., Drettakis, G. and Tost, D., “A gpu-Driven Algorithm for Accurate Interactive Specular Reflections on Curved Objects,” Proceedings of the 2006 Eurographics Symposium on Rendering (2006).
14. Estalella, P., Martin, I., Drettakis, G., Tost, D., Devillers, O. and Cazals, F., “Accurate Interactive Specular Reflections on Curved Objects,” Vision Modeling and Visualization (VMV) (2005) pp. 8.
15. Gasparini, S., Sturm, P. and Barreto, J., “Plane-Based Calibration of Central Catadiotpric Cameras,” IEEE International Conference on Computer Vision (2009), pp. 1195–1202.
16. Glaeser, G., “Reflections on spheres and cylinders of revolution,” J. Geom. Graph. 3 (2), 121139 (1999).
17. Goncalves, N., “On the reflection point where light reflects to a known destination in quadric surfaces,” Opt. Lett. 35 (2), 100102 (Jan. 2010).
18. Goncalves, N. and Nogueira, A. C., “Projection through quadric mirrors made faster,” ICCVW: 9th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Kyoto, Japan (Oct. 2009), pp. 2141–2148.
19. Hecht, E., Optics (Addison-Wesley, Massachusetts, USA, 1987).
20. Levin, J., “A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces,” Commun. ACM 19 (10), 555563 (1976).
21. Levin, J., “Mathematical models for determining the intersection of quadric surfaces,” Comput. Graph. Image Process. 11 (1), 7387 (1979).
22. Lhuillier, M., “Automatic scene structure and camera motion using a catadioptric system,” Comput. Vis. Image Underst. 109 (2), 186203 (2008).
23. Martin, A. and Popescu, V., “Reflection Morphing,” ACM SIGGRAPH 2004 Sketches, SIGGRAPH '04, ACM (Los Angeles, California, USA, 2004), pp. 152–156.
24. Mei, C. and Rives, P., “Single View-Point Omnidirectional Camera Calibration from Planar Grids,” In: IEEE International Conference on Robotics and Automation, Rome, Italy (Apr. 2007), pp. 3945–3950.
25. Micusik, B. and Pajdla, T., “Autocalibration & 3d Reconstruction with Non-Central Catadioptric Cameras,” IEEE Conference on Computer Vision and Pattern Recognition (Washington, DC, USA, 2004) pp. 58–65.
26. Mitchell, D. and Hanrahan, P., “Illumination from curved reflectors,” SIGGRAPH Comput. Graph. 26 (2) (1992) 283291.
27. Ofek, E. and Rappoport, A., “Interactive Reflections on Curved Objects,” SIGGRAPH '98, New York, NY, USA, ACM (1998) pp. 333–342.
28. Press, W., Teukolsky, S., Vetterling, W. and Flannery, B., Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, UK, 2007).
29. Roger, D. and Holzschuch, N., “Accurate specular reflections in real-time,” Comput. Graph. Forum 25 (3), 293302 (2006).
30. Roth, S. and Black, M. J., “Specular Flow and the Recovery of Surface Structure,” In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, USA (Jun. 2006), pp. 1869–1876.
31. Scaramuzza, D., Martinelli, A. and Siegwart, R., “A Toolbox for Easily Calibrating Omnidirectional Cameras,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (Oct. 2006), pp. 5695–5701.
32. Sturm, P. and Barreto, J., “General Imaging Geometry for Central Catadioptric Cameras,” In: IEEE European Conference on Computer Vision, Springer Berlin Heidelberg, Marseille, France (Oct. 2008), pp. 609622.
33. Swaminathan, R., Grossberg, M. and Nayar, S., “Non-single viewpoint catadioptric cameras: Geometry and analysis,” Int. J. Comput. Vis. 66 (3), 211229 (2006).
34. Unger, J., Wenger, A., Hawkins, T., Gardner, A. and Debevec, P. E., “Capturing and Rendering with Incident Light Fields,” Proceedings of the 14th Eurographics Workshop on Rendering Techniques, Leuven, Belgium (Jun. 25–27, 2003), pp. 141–149.
35. Whitted, T., “An improved illumination model for shaded display,” Commun. ACM 23 (6), 343349 (Jun. 1980).
36. Ying, X. and Hu, Z., “Catadioptric camera calibration using geometric invariants,” IEEE Trans. Pattern Anal. Mach. Intell. 26 (10), 12601271 (2004).
37. Yu, J., Yang, J. and McMillan, L., “Real-Time Reflection Mapping with Parallax,” Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D '05, ACM (Washington, DC, USA, 2005) pp. 133–138.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 198 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd July 2018. This data will be updated every 24 hours.