Skip to main content Accessibility help

A globally converging algorithm for adaptive manipulation and trajectory following for mobile robots with serial redundant arms

  • Paul Moubarak (a1) and Pinhas Ben-Tzvi (a1)


In this paper the tip-over stability of mobile robots during manipulation with redundant arms is investigated in real-time. A new fast-converging algorithm, called the Circles Of INitialization (COIN), is proposed to calculate globally optimal postures of redundant serial manipulators. The algorithm is capable of trajectory following, redundancy resolution, and tip-over prevention for mobile robots during eccentric manipulation tasks. The proposed algorithm employs a priori training data generated from an exhaustive resolution of the arm's redundancy along a single direction in the manipulator's workspace. This data is shown to provide educated initial guess that enables COIN to swiftly converge to the global optimum for any other task in the workspace. Simulations demonstrate the capabilities of COIN, and further highlight its convergence speed relative to existing global search algorithms.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Abo-Shanab, R. F. and Sepehr, N., “On dynamic stability of manipulators mounted on mobile platforms,” Robotica 19 (4), 439449 (2001).
2.Czarnetzki, S., Kerner, S. and Urbann, O., “Observer-based dynamic walking control for biped robots,” J. Robot. Auton. Syst. 57 (8), 839845 (2009).
3.Huang, Q., Tanie, K. and Sugano, S., “Coordinated motion planning for a mobile manipulator considering stability and manipulation,” Int. J. Robot. Res. 19 (8), 732742 (2000).
4.Kim, J., Chung, W. K., Youm, Y. and Lee, B. H., “Real-Time ZMP Compensation Method using Null Motion for Mobile Manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC (May 2005).
5.Korayem, M. H., Azimirad, V. and Nikoobin, A., “Maximum load-carrying capacity of autonomous mobile manipulator in an environment with obstacle considering tip over stability,” Int. J. Adv. Manuf. Technol. 46, 811829 (2010).
6.Rey, D. A. and Papadoupoulos, E. G., “Online Automatic Tipover Prevention for Mobile Manipulators,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'97), France (Sep. 1997).
7.Meghdari, A., Naderi, D. and Alam, M. R., “Neural-network-based observer for real-time tipover estimation,” J. Mechatronics, 15, 9891004 (2005).
8.Korayem, M. H., Ghariblu, H., Korayem, M. H., Ghariblu, H. and Basu, A., “Maximum allowable load on wheeled mobile manipulators imposing redundancy constraints,” J. Robot. Auton. Syst. 44 (2), 151159 (2004).
9.Korayem, M. H., Nikoobin, A. and Azimirad, V., “Maximum load carrying capacity of mobile manipulators: Optimal control approach,” Robotica 27, 147159 (2009).
10.Tang, Z. B., “Adaptive partitioned random search to global optimization,” IEEE Trans. Autom. Control 39 (11), 22352244 (1994).
11.Grudi, G. Z. and Lawrence, P. D., “Iterative inverse kinematics with manipulator configuration control,” IEEE Trans. Robot. Autom. 9 (4), 476483 (1993).
12.Sasaki, S., “On numerical techniques for kinematic problems of general serial-link robot manipulators,” Robotica 12 (4), 309322 (1994).
13.Lenarcic, J., “Effective secondary task execution of redundant manipulators,” Robotica 16 (4), 457462 (1998).
14.Zhang, Z. and Zhang, Y., “Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming,” IEEE/ASME Trans. Mechatronics 18 (2), 674686 (2013).
15.Kumar, P. P. and Behera, L., “Visual servoing of redundant manipulator with jacobian matrix estimation using self-organizing map,” J. Robot. Auton. Syst. 58 (8), 978990 (2010).
16.Goldenberg, A. A. and Fenton, R. G., “A null-space solution of the inverse kinematics of redundant manipulators based on a decomposition of screws,” J. Mech. Design 115 (3), 530539 (1993).
17.Caccavale, F., Chiaverini, S. and Sicillano, B., “Second-order kinematic control of robot manipulators with Jacobian damped least-squares inverse: Theory and experiments,” IEEE/ASME Trans. Mechatronics 2 (3), 188194 (1997).
18.Tchoń, K., “Repeatable, extended Jacobian inverse kinematics algorithm for mobile manipulators,” Syst. Control Lett. 55 (2), 8793 (2006).
19.Zergeroglu, E., Dawson, D. D., Walker, I. W. and Setlur, P., “Nonlinear tracking control of kinematically redundant robot manipulators,” IEEE/ASME Trans. Mechatronics 9 (1), 129132 (2004).
20.Sciavicco, L. and Siciliano, B., “A solution algorithm to the inverse kinematic problem for redundant manipulators,” IEEE Trans. Robot. Autom. 4 (4), 403410 (1988).
21.Chung, W. J., Chung, W. K. and Youm, Y., “Kinematic control of planar redundant manipulators by extended motion distribution scheme,” Robotica 10 (3), 255262 (1992).
22.Fahimi, F., Autonomous Robots, Modeling, Path Planning and Control (Springer, New York, 2008) ch. 2.
23.Chirikjian, G. S. and Burdick, J. W., “A modal approach to hyper-redundant manipulator kinematics,” IEEE Trans. Robot. Autom. 10 (3), 343354 (1994).
24.Kumar, S., Premkumar, P., Dutta, A. and Behera, L., “Visual motor control of a 7-DOF redundant manipulator using redundancy preserving learning network,” Robotica 28 (6), 795810 (2010).
25.Moubarak, P. and Ben-Tzvi, P., “Field Testing and Adaptive Manipulation of a Hybrid Mechanism Mobile Robot,” Proceedings of the IEEE International Symposium on Robotic and Sensor Environments (ROSE 2011), Montreal, Canada (Sep. 2011).
26.Ben-Tzvi, P., “Experimental validation and field performance metrics of a hybrid mobile robot mechanism,” J. Field Robot. 27 (3), 250267 (2010).
27.Ben-Tzvi, P., Goldenberg, A. A. and Zu, J. W., “Design and analysis of a hybrid mobile robot mechanism with compounded locomotion and manipulation capability,” J. Mech. Des. 130 (7), 113 (2008).
28.Ben-Tzvi, P., Goldenberg, A. A. and Zu, J. W., “Articulated hybrid mobile robot mechanism with compounded mobility and manipulation and on-board wireless sensor/actuator control interfaces,” Mechatronics J. 20 (6), 627639 (2010).
29.Carretero, J. A. and Nahon, M. A., “Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms,” IEEE Trans. Syst. Man Cybern. 35 (6), 11441155 (2005).
30.Bryson, A. E. and Ho, Y. C., Applied Optimal Control: Optimization, Estimation, and Control, rev. ed. (Hemisphere, Washington, DC, 1975) ch. 1.
31.Zsolt, U., Lasdon, L., Plummer, J. C., Glover, F., Kelly, J. and Martí, R., “Scatter search and local NLP solvers: A multi-start framework for global optimization,” J. Comput. 19 (3), 328340 (2007).
32.Moubarak, P., Ben-Tzvi, P., “Spatial trajectory following with COIN algorithm,” available at: (2012) (accessed April, 2012).
33.Moubarak, P., Ben-Tzvi, P., “STORM Animation,” available at: (Feb. 2011) (accessed April, 2012).


Related content

Powered by UNSILO

A globally converging algorithm for adaptive manipulation and trajectory following for mobile robots with serial redundant arms

  • Paul Moubarak (a1) and Pinhas Ben-Tzvi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.