Skip to main content
    • Aa
    • Aa

Human-adaptive control of series elastic actuators

  • Andrea Calanca (a1) and Paolo Fiorini (a1)

Force-controlled series elastic actuators (SEAs) are the widely used components of novel physical human–robot interaction applications such as assistive and rehabilitation robotics. These systems are characterized by the presence of the “human in the loop” so that control response and stability depend on uncertain human dynamics. A common approach to guarantee stability is to use a passivity-based controller. Unfortunately, existing passivity-based controllers for SEAs do not define the performance of the force/torque loop. We propose a method to obtain predictable force/torque dynamics based on adaptive control and oversimplified human models. We propose a class of stable human-adaptive algorithms and experimentally show advantages of the proposed approach.

Corresponding author
*Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. S. P. Buerger and N. Hogan , “Complementary stability and loop shaping for improved human-robot interaction,” IEEE Trans. Robot. 23 (2), 232244 (2007).

3. L. L. Cai , A. J. Fong , C. K. Otoshi , Y. Liang , J. W. Burdick , R. R. Roy and V. R. Edgerton , “Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning,” J. Neurosci. 26 (41), 1056410568 (Oct. 2006).

4. A. Calanca , L. M. Capisani , A. Ferrara and L. Magnani , “MIMO closed loop identification of an industrial robot,” IEEE Trans. Control Syst. Technol. 19 (5), 12141224 (2011).

5. A. Calanca , S. Piazza and P. Fiorini , “Force Control System for Pneumatic Actuators of an Active Gait Orthosis,” Proceedings of the 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Japan (Sep. 26–29, 2010) pp. 6469.

6. A. Calanca , S. Piazza and P. Fiorini , “A motor learning oriented, compliant and mobile gait orthosis,” Appl. Bionics Biomech. 9 (1), 1527 (2012).

7. A. Duschau-Wicke , J. von Zitzewitz , A. Caprez , L. Lunenburger and R. Riener , “Path control: A method for patient-cooperative robot-aided gait rehabilitation,” IEEE Trans. Neural. Syst. Rehabil. Eng. 18 (1), 3848 (Feb. 2010).

9. M. Ferraro , J. J. Palazzolo , J. Krol , H. I. Krebs , N. Hogan and B. T. Volpe , “Robotaided sensorimotor arm training improves outcome in patients with chronic stroke,” Neurology 61 (11), 16041607 (2003).

10. R. E. Kearney , R. B. Stein and L. Parameswaran , “Identification of intrinsic and reflex contributions to human ankle stiffness dynamics,” IEEE Trans. Biomed. Eng. 44 (6), 493504 (Jun. 1997).

11. K. Kong , S. Member and J. Bae , “Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications,” IEEE/ASME Int. Conf. Mechatronics 14 (1), 105118 (2009).

12. H. I. Krebs , L. Dipietro , B. T. Volpe and N. Hogan , “Rehabilitation robotics: Performance-based progressive robot-assisted therapy,” Auton. Robots 15, 720 (2003).

13. K. Kyoungchul , M. Hyosang , J. Doyoung and T. Masayoshi , “Control of an exoskeleton for realization of aquatic therapy effects,” IEEE/ASME Trans. Mechatronics 15, 191200 (2010).

18. J. Pratt , C.-M. Chew , A. Torres , P. Dilworth and G. Pratt , “Virtual model control: An intuitive approach for bipedal locomotion,” Int. J. Robot. Res. 20 (2), 129143 (2001).

20. R. B. Stein , E. P. Zehr , M. K. Lebiedowska , D. B. Popović , A. Scheiner and H. J. Chizeck , “Estimating mechanical parameters of leg segments in individuals with and without physical disabilities,” IEEE Trans. Rehabil. Eng. 4 (3), 201211 (Sep. 1996).

21. S. Stroeve , “Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control,” Biol. Cybern. 81 (5–6), 475494 (Nov. 1999).

22. K. P. Tee , E. Burdet , C. M. Chew and T. E. Milner , “A model of force and impedance in human arm movements,” Biol. Cybern. 90 (5), 368375 (May 2004).

25. H. Vallery , E. H. F. van Asseldonk , M. Buss and H. van der Kooij , “Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation,” IEEE Trans. Neural Syst. Rehabil. Eng. 17 (1), 2330 (Feb. 2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 92 *
Loading metrics...

Abstract views

Total abstract views: 202 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2017. This data will be updated every 24 hours.