Skip to main content
    • Aa
    • Aa

Human-adaptive control of series elastic actuators

  • Andrea Calanca (a1) and Paolo Fiorini (a1)

Force-controlled series elastic actuators (SEAs) are the widely used components of novel physical human–robot interaction applications such as assistive and rehabilitation robotics. These systems are characterized by the presence of the “human in the loop” so that control response and stability depend on uncertain human dynamics. A common approach to guarantee stability is to use a passivity-based controller. Unfortunately, existing passivity-based controllers for SEAs do not define the performance of the force/torque loop. We propose a method to obtain predictable force/torque dynamics based on adaptive control and oversimplified human models. We propose a class of stable human-adaptive algorithms and experimentally show advantages of the proposed approach.

Corresponding author
*Corresponding author. E-mail:
Hide All
1.Buerger S. P. and Hogan N., “Complementary stability and loop shaping for improved human-robot interaction,” IEEE Trans. Robot. 23 (2), 232244 (2007).
2.Buerger S. and Hogan N., “Relaxing Passivity for Human-Robot Interaction,” Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (Oct. 2006) pp. 4570–4575.
3.Cai L. L., Fong A. J., Otoshi C. K., Liang Y., Burdick J. W., Roy R. R. and Edgerton V. R., “Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning,” J. Neurosci. 26 (41), 1056410568 (Oct. 2006).
4.Calanca A., Capisani L. M., Ferrara A. and Magnani L., “MIMO closed loop identification of an industrial robot,” IEEE Trans. Control Syst. Technol. 19 (5), 12141224 (2011).
5.Calanca A., Piazza S. and Fiorini P., “Force Control System for Pneumatic Actuators of an Active Gait Orthosis,” Proceedings of the 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Japan (Sep. 26–29, 2010) pp. 6469.
6.Calanca A., Piazza S. and Fiorini P., “A motor learning oriented, compliant and mobile gait orthosis,” Appl. Bionics Biomech. 9 (1), 1527 (2012).
7.Duschau-Wicke A., von Zitzewitz J., Caprez A., Lunenburger L. and Riener R., “Path control: A method for patient-cooperative robot-aided gait rehabilitation,” IEEE Trans. Neural. Syst. Rehabil. Eng. 18 (1), 3848 (Feb. 2010).
8.Erdmann W. S., “Geometry and inertia of the human body-review of research,” Acta Bioeng. Biomech. 1 (1), 2335 (1999).
9.Ferraro M., Palazzolo J. J., Krol J., Krebs H. I., Hogan N. and Volpe B. T., “Robotaided sensorimotor arm training improves outcome in patients with chronic stroke,” Neurology 61 (11), 16041607 (2003).
10.Kearney R. E., Stein R. B. and Parameswaran L., “Identification of intrinsic and reflex contributions to human ankle stiffness dynamics,” IEEE Trans. Biomed. Eng. 44 (6), 493504 (Jun. 1997).
11.Kong K., Member S. and Bae J., “Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications,” IEEE/ASME Int. Conf. Mechatronics 14 (1), 105118 (2009).
12.Krebs H. I., Dipietro L., Volpe B. T. and Hogan N., “Rehabilitation robotics: Performance-based progressive robot-assisted therapy,” Auton. Robots 15, 720 (2003).
13.Kyoungchul K., Hyosang M., Doyoung J. and Masayoshi T., “Control of an exoskeleton for realization of aquatic therapy effects,” IEEE/ASME Trans. Mechatronics 15, 191200 (2010).
14.Narendra K. S. and Annaswamy A. M., “Robust Adaptive Control,” In: Proceedings of the 1984 American Control Conference (ACC '84), Boston, MA (TFRT-1035) (Springer, New York, NY, 1985) 848 pp.
15.Palazzolo J. J., “Robotic Technology to Aid and Assess Recovery and Learning in Stroke Patients,” Ph.D. Thesis (Massachusetts Institute of Technology, 2005).
16.Pratt G. A. and Williamson M. M., “Series Elastic Actuators,” In: IEEE International Conference on Intelligent Robots and Systems, vol. 1 (1995) pp. 399–406.
17.Pratt G. A., Willisson P. and Bolton C., “Late Motor Processing in Low-Impedance Robots: Impedance Control of Series-Elastic Actuators,” American Control Conference (2004) pp. 3245–3251.
18.Pratt J., Chew C.-M., Torres A., Dilworth P. and Pratt G., “Virtual model control: An intuitive approach for bipedal locomotion,” Int. J. Robot. Res. 20 (2), 129143 (2001).
19.Slotine J.-J. E. and Li W., Applied Nonlinear Control, vol. 62 (Prentice Hall, Upper Saddle River, NJ, 1991).
20.Stein R. B., Zehr E. P., Lebiedowska M. K., Popović D. B., Scheiner A. and Chizeck H. J., “Estimating mechanical parameters of leg segments in individuals with and without physical disabilities,” IEEE Trans. Rehabil. Eng. 4 (3), 201211 (Sep. 1996).
21.Stroeve S., “Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control,” Biol. Cybern. 81 (5–6), 475494 (Nov. 1999).
22.Tee K. P., Burdet E., Chew C. M. and Milner T. E., “A model of force and impedance in human arm movements,” Biol. Cybern. 90 (5), 368375 (May 2004).
23.Vallery H., “Stable and User-Controlled Assistance of Human Motor Function.” Ph.D. Thesis (University of Munchen, Munich, Germany, 2009).
24.Vallery H., Ekkelenkamp R., van der Kooij H. and Buss M., “Passive and Accurate Torque Control of Series Elastic Actuators,” Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (Oct. 2007) pp. 3534–3538.
25.Vallery H., van Asseldonk E. H. F., Buss M. and van der Kooij H., “Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation,” IEEE Trans. Neural Syst. Rehabil. Eng. 17 (1), 2330 (Feb. 2009).
26.Xu Y. and Hollerbach J. M., “A robust ensemble data method for identification of human joint mechanical properties during movement,” IEEE Trans. Biomed. Eng. 46 (4), 409419 (Apr. 1999).
27.Zatsiorsky V. M., Kinetics of Human Motion (Human Kinetics, Champaign, IL, 2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 123 *
Loading metrics...

Abstract views

Total abstract views: 282 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.