Skip to main content Accesibility Help

A hybrid approach to fast and accurate localization for legged robots

  • Renato Samperio (a1), Huosheng Hu (a1), Francisco Martín (a2) and Vicente Matellán (a2)

This paper describes a hybrid approach to a fast and accurate localization method for legged robots based on Fuzzy-Markov (FM) and Extended Kalman Filters (EKF). Both FM and EKF techniques have been used in robot localization and exhibit different characteristics in terms of processing time, convergence, and accuracy. We propose a Fuzzy-Markov–Kalman (FM–EKF) localization method as a combined solution for a poor predictable platform such as Sony Aibo walking robots. The experimental results show the performance of EKF, FM, and FM-EKF in a localization task with simple movements, combined behaviors, and kidnapped situations. An overhead tracking system was adopted to provide a ground truth to verify the performance of the proposed method.

Corresponding author
*Corresponding author. E-mail:
Hide All
1.Baltzakis, H. and Trahanias, P., “Hybrid Mobile Robot Localization Using Switching State-Space Models,” Proceedings of IEEE International Conference on Robotics and Automation, Washington, DC, USA (2002) pp. 366373.
2.Buschka, P., Saffiotti, A. and Wasik, Z., “Fuzzy Landmark-Based Localization for a Legged Robot,” Proceedings of IEEE Intelligent Robots and Systems, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kagawa University, Takamatsu, Japan, (2000) pp. 12051210.
3.Duckett, T. and Nehmzow, U., “Performance Comparison of Landmark Recognition Systems for Navigating Mobile Robots,” Proceedings of 17th National Conference on Artificial Intelligence (AAAI-2000), AAAI Press/The MIT Press (2000) pp. 826831.
4.Fox, D., Burgard, W., Dellaert, F. and Thrun, S., “Monte Carlo Localization: Efficient Position Estimation for Mobile Robots,” Proceedings of AAAI/IAAI, Orlando, Florida, USA, (1999), pp. 343349.
5.Fox, D., Burgard, W. and Thrun, S., “Markov Localization for Reliable Robot Navigation and People Detection,” In Sensor Based Intelligent Robots, (Christens, H. I. et al. , ed), Dagstuhl Castle, Germany, (1998), pp. 120.
6.Gutmann, J.-S., “Markov–Kalman Localization for Mobile Robots,” International Conference on Pattern Recognition (2), Quebec, Canada, (2002), pp. 601604.
7.Gutmann, J.-S., Burgard, W., Fox, D. and Konolige, K., “An Experimental Comparison of Localization Methods,” Proceedings of IEEE/RSJ International Conference on Intelligen Robots and Systems (Oct. 13–17, 1998) vol. 2, pp. 736743.
8.Hatice, K., Celik, B. and Akin, H. L., “Comparison of localization methods for a robot soccer team,” Int. J. Adv. Robot. Syst. 3 (4), 295302 (2006).
9.Herrero-Pérez, D., Artínez Barberá, H. M. and Saffiotti, A., “Fuzzy Self-Localization Using Natural Features in the Four-Legged League,” In RoboCup 2004: Robot Soccer World Cup VIII (Nardi, D., Riedmiller, M. and Sammut, C., eds.) (LNAI. Springer-Verlag, Berlin, DE, 2004). Online at pp. 110121.
10.Jensfelt, P., Austin, D., Wijk, O. and Andersson, M., “Feature Based Condensation for Mobile Robot Localization,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, USA, (2000) pp. 25312537.
11.Kiriy, E. and Buehler, M., “Three-state extended kalman filter for mobile robot localization,” Tech. Rep. TR-CIM 05.07, McGill University, Montreal, Canada, April 2002.
12.Kristensen, S. and Jensfelt, P., “An Experimental Comparison of Localisation Methods,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Navada, USA, (Oct. 27–31, 2003) pp. 992997.
13.Tanaka, K., Kimuro, Y., Okada, N. and Kondo, E., “Global Localization with Detection of Changes in Non-Stationary Environments,” Proceedings of IEEE International Conference on Robotics and Automation (Apr. 26–May 1, 2004) pp. 1487–1492.
14.Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D., Hahnel, D., Rosenberg, C., Roy, N., Schulte, J. and Schulz, D.Probabilistic algorithms and the interactive museum tour-guide robot Minerva,” Int. J. Robot. Res. 19 (11), 972999 (2000).
15.Thrun, S., Fox, D., Burgard, W. and Dellaert, F., “Robust Monte Carlo localization for mobile robots,” J. Artificial Intell. 128 (1–2), 99141 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed