Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T01:47:38.380Z Has data issue: false hasContentIssue false

Kinematic modeling and hybrid motion planning for wheeled-legged rovers to traverse challenging terrains

Published online by Cambridge University Press:  25 October 2023

Bike Zhu
Affiliation:
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
Jun He*
Affiliation:
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
Jiaze Sun
Affiliation:
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
*
Corresponding author: Jun He; Email: jhe@sjtu.edu.cn

Abstract

This paper presents a kinematics modeling and hybrid motion planning framework for wheeled-legged rovers. It is a unified solution for wheeled-legged rovers to traverse multiple challenging terrains using hybrid locomotion. A kinematic model is first established to describe the rover’s motions. Then, a hybrid motion planning framework is proposed to determine the rover’s gait patterns and parameterize the legs’ and the body’s trajectories. Furthermore, an optimization algorithm based on B-spline is utilized to minimize the motors’ energy dissipation and generate smooth trajectories. The wheeled and legged hybridization allows the rover for faster locomotion while maintaining high stability. Besides, it also improves the rover’s ability to overcome obstacles. Prototype experiments are carried out in more complex environments to verify the rover’s flexibility and maneuverability to traverse irregular terrains. The proposed algorithm reduces the swing amplitude by 83.3% compared to purely legged locomotion.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Han, Y. and Guo, W., “A computable framework to efficiently design both current and robotic legged landers for extraterrestrial exploration missio n,” J. Mech. Des. 144 (1), 014501 (2022).CrossRefGoogle Scholar
Norris, J. S., Powell, M. W., Vona, M. A., Backes, P. G. and Wick, J. V., “Mars Exploration Rover Operations with the Science Activity Planner,” In: IEEE International Conference on Robotics and Automation (2005) pp. 46184623.Google Scholar
Estlin, T. A., Bornstein, B. J., Gaines, D. M., Anderson, R. C., Thompson, D. R., Burl, M., Castaño, R. and Judd, M., “Aegis automated science targeting for the mer opportunity rover,” ACM Trans. Intell. Syst. Technol. 3(3), 119 (2012).CrossRefGoogle Scholar
Stack, K. M., Williams, N. R., Calef, F. III, Sun, V. Z., Williford, K. H., Farley, K. A., Eide, S., Flannery, D., Hughes, C., Jacob, S. R., Kah, L. C., Meyen, F., Molina, A., Nataf, C. Q., Rice, M., Russell, P., Scheller, E., Seeger, C. H., Abbey, W. J., Adler, J. B., Amundsen, H., Anderson, R. B., Angel, S. M., Arana, G., Atkins, J., Barrington, M., Berger, T., Borden, R., Boring, B., Brown, A., Carrier, B. L., Conrad, P., Dypvik, H., Fagents, S. A., Gallegos, Z. E., Garczynski, B., Golder, K., Gomez, F., Goreva, Y., Gupta, S., Hamran, S.-E., Hicks, T., Hinterman, E. D., Horgan, B. N., Hurowitz, J., Johnson, J. R., Lasue, J., Kronyak, R. E., Liu, Y., Madariaga, J. M., Mangold, N., McClean, J., Miklusicak, N., Nunes, D., Rojas, C., Runyon, K., Schmitz, N., Scudder, N., Shaver, E., SooHoo, J., Spaulding, R., Stanish, E., Tamppari, L. K., Tice, M. M., Turenne, N., Willis, P. A. and Aileen Yingst, R., “Photogeologic map of the perseverance rover field site in Jezero Crater constructed by the Mars 2020 Science Team,” Space Sci. Rev. 216(8), 147 (2020).CrossRefGoogle ScholarPubMed
Zou, Y., Zhu, Y., Bai, Y., Wang, L., Jia, Y., Shen, W., Fan, Y., Liu, Y., Wang, C., Zhang, A., Yu, G., Dong, J., Shu, R., He, Z., Zhang, T., Du, A., Fan, M., Yang, J., Zhou, B., Wang, Y. and Peng, Y., “Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission,” Adv. Space Res. 67(2), 812823 (2021).CrossRefGoogle Scholar
Wilcox, B. H., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A. and Cooper, B., “ATHLETE: A cargo handling and manipulation robot for the moon,” J. Field Robot. 24(5), 421434 (2007).CrossRefGoogle Scholar
Mahmoud, T., Huy, D. H. and Antonios, B., “Systematic kinematics analysis and balance control of high mobility rovers over rough terrain,” Robot. Auton. Syst. 61(1), 1324 (2013).Google Scholar
Hauser, K., Bretl, T., Latombe, J.-C., Harada, K. and Wilcox, B., “Motion planning for legged robots on varied terrain,” Int. J. Robot. Res. 27(11-12), 13251349 (2008).CrossRefGoogle Scholar
Schuster, M. J., Brunner, S. G., Bussmann, K., Büttner, S., Dömel, A., Hellerer, M., Lehner, H., Lehner, P., Porges, O., Reill, J., Riedel, S., Vayugundla, M., Vodermayer, B., Bodenmüller, T., Brand, C., Friedl, W., Grixa, I., Hirschmüller, H., Kaßecker, M., Márton, Zán-C., Nissler, C., Ruess, F., Suppa, M. and Wedler, A., “Towards autonomous planetary exploration: The Lightweight Rover Unit (LRU), its Success in the SpaceBotCamp Challenge, and Beyond,” J. Intell. Robot. Syst. 93(3-4), 461494 (2019).CrossRefGoogle Scholar
Reid, W., Fitch, R., Göktoğan, A. H. and Sukkarieh, S., “Sampling-based hierarchical motion planning for a reconfigurable wheel-on-leg planetary analogue exploration rover,” J. Field Robot. 37(5), 786811 (2020).CrossRefGoogle Scholar
Cordes, F., Kirchner, F. and Babu, A., “Designand field testing of a rover with an actively articulated suspension system in a Mars analog terrain,” J. Field Robot. 35(7), 11491181 (2018).CrossRefGoogle Scholar
Reid, W., Meirion-Griffith, G., Karumanchi, S., Emanuel, B., Chamberlain-Simon, B., Bowkett, J. and Garrett, M., “Actively Articulated Wheel-on-Limb Mobility for Traversing Europa Analogue Terrain,” In: Proceedings in Advanced Robotics, vol. 16 (Springer, Singapore, 2021) pp. 337351.Google Scholar
Chen, G., Jin, B. and Chen, Y., “Accurate and robust body position trajectory tracking of six-legged walking robots with nonsingular terminal sliding mode control method,” Appl. Math. Model. 77(2), 13481372 (2020).CrossRefGoogle Scholar
Chen, G., Yang, X., Xu, Y., Lu, Y. and Hu, H., “Neural network-based motion modeling and control of water-actuated soft robotic fish,” Smart Mater. Struct. 32(1), 015004 (2022).CrossRefGoogle Scholar
Zarkandi, S., “Dynamic modeling and power optimization of a 4RPSP PS parallel flight simulator machine,” Robotica 40(3), 646671 (2022).CrossRefGoogle Scholar
Han, Y., Guo, W., Zhao, D. and Li, Z., “Multi-mode unified modeling and operation capability synergistic evaluation for the reconfigurable legged mobile lander,” Mech. Mach. Theory 171(5), 104714 (2022).CrossRefGoogle Scholar
Du, W., Fnadi, M. and Benamar, F., “Rolling based locomotion on rough terrain for a wheeled quadruped using centroidal dynamics,” Mech. Mach. Theory 153(11), 103984 (2020).CrossRefGoogle Scholar
Maufroy, C., Kimura, H. and Takase, K., “Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading,” Auton. Robot. 28(3), 331353 (2010).CrossRefGoogle Scholar
Potts, A. and Da Cruz, J., “Optimal power loss motion planning in legged robots,” Robotica 34(2), 423448 (2016).CrossRefGoogle Scholar
Tian, Y. and Gao, F., “Efficient motion generation for a six-legged robot walking on irregular terrain via integrated foothold selection and optimization-based whole-body planning,” Robotica 36(3), 333352 (2018).CrossRefGoogle Scholar
Viragh, Y., Bjelonic, M., Bellicoso, C. D., Jenelten, F. and Hutter, M., “Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints,” IEEE Robot. Autom. Lett. 4(2), 16331640 (2019).CrossRefGoogle Scholar
Bjelonic, M., Klemm, V., Lee, J. and Hutter, M., “A Survey of Wheeled-Legged Robots,” In: Climbing and Walking Robots Conference (Springer, Cham, 2022) pp. 8394.Google Scholar
Bellegarda, G. and Byl, K., “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” In: 2019 IEEE 58th Conference on Decision and Control (2019) pp. 77767781.CrossRefGoogle Scholar
Zhornyak, L. and Emami, M., “Gait optimization for quadruped rovers,” Robotica 38(7), 12631287 (2020).CrossRefGoogle Scholar
Tarokh, M., “A unified kinematics modeling, optimization and control of universal robots: From serial and parallel manipulators to walking, rolling and hybrid robots,” Auton. Robot. 44(7), 12331248 (2020).CrossRefGoogle Scholar
Lee, J., Bakolas, E. and Sentis, L., “An efficient and direct method for trajectory optimization of robots constrained by contact kinematics and forces,” Auton. Robot. 45(1), 135153 (2021).CrossRefGoogle Scholar
Iagnemma, K., Kang, S., Shibly, H. and Dubowsky, S., “Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers,” IEEE Trans. Robot. 20(5), 921927 (2004).CrossRefGoogle Scholar
He, J., Sun, Y., Yang, L., Sun, J., Xing, Y. and Gao, F., “Design and control of TAWL-A wheel-legged rover with terrain-adaptive wheel speed allocation capability,” IEEE Trans. Mechatron. 27(4), 3176638–2223 (2022).CrossRefGoogle Scholar
Zhu, B., He, J., Sun, J., Xing, Y. and Gao, F., “Plane-based grid map: A robot-centric mapping algorithm for wheel-legged rover motion planning in unstructured terrain environments,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236(20), 1060010614 (2022).CrossRefGoogle Scholar
Sun, J., You, Y., Zhao, X., Adiwahono, A. H. and Chew, C. M., “Towards more possibilities: Motion planning and control for hybrid locomotion of wheeled-legged robots,” IEEE Robot. Autom. Lett. 5(2), 37233730 (2020).CrossRefGoogle Scholar