Skip to main content

Maximum clearance rapid motion planning algorithm

  • Shubham Singh Paliwal (a1) and Rahul Kala (a1)

This paper proposes a new path-planning algorithm which is close to the family of bug algorithms. Path planning is one of the challenging problems in the area of service robotics. In practical applications, traditional methods have some limitations with respect to cost, efficiency, security, flexibility, portability, etc. Our proposed algorithm offers a computationally inexpensive goal-oriented strategy by following a smooth and short trajectory. The paper also presents comparisons with other algorithms. In addition, the paper also presents a test bed which is created to test the algorithm. We have used a two-wheeled differential drive robot for the navigation and only a single camera is used as a feedback sensor. Using an extended Kalman filter, we localize the robot efficiently in the map. Furthermore, we compare the actual path, predicted path and planned path to check the effectiveness of the control system.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Bender, M. A., Fernandez, A., Ron, D., Sahai, A. and Vadhan, S., “The Power of a Pebble: Exploring and Mapping Directed Graphs,” Proceedings of the Annual Symposium on Foundations of Computer Science (1998) pp. 1–2
2. Tiwari, R., Shukla, A. and Kala, R., Intelligent Planning for Mobile Robotics: Algorithmic Approaches (IGI-Global, Hershey, PA, 2013).
3. Clarke, F. H., Optimization and Nonsmooth Analysis (Springer-Verlag, Berlin, 1998).
4. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A. and Peleg, D., “Graph exploration by a finite automaton,” Theoretical Comput. Sci. 345 (2–3), 331344 (2005).
5. Lumelsky, V. J., Sensing, Intelligence, Motion: How Robots and Humans Move in an Unstructured World (Wiley-Interscience, Hoboken, New Jersey, 2005).
6. Lumelsky, V. J. and Stepanov, A. A., “Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape,” Algorithmica 2, 403430 (1987).
7. Kalman, R. E., “Contributions to the theory of optimal control,” Boletín de la Sociedad Matemática Mexicana 5, 102119 (1960).
8. Kalman, R. E., “A new approach to linear filtering and prediction problems,” J. Basic Eng. 82 (D), 3545 (1960).
9. Kalman, R. E. and Bucy, R. S., “New results in linear filtering and prediction theory,” J. Basic Eng. 83 (1), 95108 (1961).
10. Bennett, S., Chap. Process control: Technology and theory in A history of control engineering, 1930–1955. IET. 50–60, (1992).
11. Salzman, O. and Halperin, D., “Asymptotically near-optimal RRT for fast, high-quality motion planning,” IEEE Trans. Robot. 32 (3), 473483 (Jun. 2016).
12. Latombe, J. C., Robot Motion Planning (Kluwer, New York, 1991).
13. Sezer, V. and Gokasan, M., “A novel obstacle avoidance algorithm: Follow the gap method,” Robot. Autonomous Syst. 60 (9), 11231134 (2012).
14. Alvarez and Sanchez, “Reactive navigation in real environments using partial center of area method,” Robot. Autonomous Syst. 58 (12), 12311237 (2010).
15. Zhang, L., Kim, Y. J. and Manocha, D., “A Hybrid Approach for Complete Motion Planning,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2007) pp. 7–14.
16. Lu, Y., Huo, X., Arslan, O. and Tsiotras, P., “Incremental multi-scale search algorithm for dynamic path planning with low worst-case complexity,” IEEE Trans. Syst., Man Cybernetics B: Cybernetics 41 (6), 15561570 (2011).
17. Cowlagi, R. V. and Tsiotras, P., “Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles,” IEEE Trans. Robot. 28 (2), 379395 (2012).
18. Kala, R., Shukla, A. and Tiwari, R., “Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning,” Artif. Intell. Rev. 33 (4), 275306 (2010).
19. Savkin, A. and Li, H., “A safe area search map building algorithm for a wheeled mobile robot in complex unknown cluttered environments,” Robotica 36 (1), 96118 (2018).
20. Rone, W. and Ben-Tzvi, P., “Mapping, localization and motion planning in mobile multi-robotic systems,” Robotica 31 (1), 123 (2013). doi: 10.1017/S0263574712000021.
21. Maddahi, Y., Sepehri, N., Maddahi, A. and Abdolmohammadi, M., “Calibration of wheeled mobile robots with differential drive mechanisms: An experimental approach,” Robotica 30 (6), 10291039 (2012).
22. Hwang, Y. and Lee, J., “Robust 2D map building with motion-free ICP algorithm for mobile robot navigation,” Robotica 35 (9), 18451863 (2017).
23. Kambhampati, S. and Davis, L., “Multi resolution path planning for mobile robots,” IEEE J. Robot. Autom. 2 (3), 135145 (1986).
24. Noborio, H., Naniwa, T. and Arimoto, S., “A quadtree-based path-planning algorithm for a mobile robot,” J. Intell. Robot. Syst. 7 (4), 574576 (1990).
25. Kala, R., Shukla, A. and Tiwari, R., “Robotic path planning in static environment using hierarchical multi-neuron heuristic search and probability based fitness,” Neurocomputing 74 (14–15), 23142335 (2011).
26. Negenborn, R., Robot Localization and Kalman Filters On finding your position in a noisy world Master's Thesis, (Utrecht University, Utrecht, Netherlands, 2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Paliwal and Kala supplementary material 2
Supplementary Video

 Video (6.8 MB)
6.8 MB
Supplementary materials

Paliwal and Kala supplementary material 1
Supplementary Video

 Video (92.7 MB)
92.7 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 119 *
Loading metrics...

* Views captured on Cambridge Core between 19th February 2018 - 25th March 2018. This data will be updated every 24 hours.