Skip to main content
    • Aa
    • Aa

A methodology for design and appraisal of surgical robotic systems

  • Michael D. O'Toole (a1), Kaddour Bouazza-Marouf (a1), David Kerr (a1), Mahendra Gooroochurn (a1) and Michael Vloeberghs (a1)...

Surgical robotics is a growing discipline, continuously expanding with an influx of new ideas and research. However, it is important that the development of new devices take account of past mistakes and successes. A structured approach is necessary, as with proliferation of such research, there is a danger that these lessons will be obscured, resulting in the repetition of mistakes and wasted effort and energy. There are several research paths for surgical robotics, each with different risks and opportunities and different methodologies to reach a profitable outcome. The main emphasis of this paper is on a methodology for ‘applied research’ in surgical robotics. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers, the most important first two tiers, and thus gain some acceptability. However, the lack of conformity to the criteria in the top tier, and the inability to conclusively prove increased clinical benefit, is shown to be hampering their potential in gaining wide establishment.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Kwoh Y. S., Hou J., Jonckheere E. A. and Hayati S., “A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery,” IEEE Trans. Biomed. Eng. 35 (2), 153160 (1988).
2. Taylor R. H. and Stoianovici D., “Medical robotics in computer-integrated surgery,” IEEE Trans. Robotics Automat. 19 (5), 765781 (2003).
3. Dario P., Hannaford B. and Menciassi A., “Smart surgical tools and augmenting devices,” IEEE Trans. Robotics Automat. 19 (5), 782792 (2003).
4. Davies B., “A review of robotics in surgery,” Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 214 (H1), 129140 (2000).
5. Pott P. P., Scharf H. P. and Schwarz M. L., “Today's state of the art in surgical robotics,” Comput. Aided Surg. 10 (2), 101132 (2005).
6. Patronik N. A., Zenati M. A. and Riviere C. N., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Comput. Aided Surg. 10 (4), 225232 (2005).
7. Lu Y. W. and Kim C. J., “Microhand for biological applications,” Appl. Phys. Lett. 89 (16), (2006).
8. Guo S., Sawamoto J. and Pan Q., “A novel type of microrobot for biomedical application,” International Conference on Intelligent Robots and Systems, Alberta, Canada (2005).
9. Kosa G., Shoham M. and Zaaroor M., “Propulsion of a swimming micro medical robot,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Alberta, Canada (2005).
10. Yesin K. B., Vollmers K. and Nelson B. J., “Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields,” Int. J. Robotics Res. 25 (5/6), 527536 (2006).
11. Sitti M. and Behkam B., “Modeling and testing of a biomimetic flagellar propulsion method for microscale biomedical swimming robots,” Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA (2005).
12. Dario P. and Menciassi A., “Frontiers of robotics in surgery: Endoluminal, endoscopic microcapsules and beyond,” IMechE Seminar on Robotic Surgery – Recent Success and Future Direction, London, UK (2008).
13. Atkins D., Best D., Briss P. A., Eccles M., Falck-Ytter Y., Flottorp S., Guyatt G. H., Harbour R. T., Haugh M. C., Henry D., Hill S., Jaeschke R., Leng G., Liberati A., Magrini N., Mason J., Middleton P., Mrukowicz J., O'Connell D., Oxman A. D., Phillips B., Schunemann H. J., Edejer T. T., Varonen H., Vist G. E., Williams J. W. Jr., and Zaza S., “Grading quality of evidence and strength of recommendations,” BMJ Clin. Res. 328 (7454), 1490 (2004).
14. Menon M., Shrivastava A. and Tewari A., “Laparoscopic radical prostatectomy: Conventional and robotic,” Urology 66 (5 Suppl.), 101104 (2005).
15. Menon M., Shrivastava A., Kaul S., Badani K. K., Fumo M., Bhandari M. and Peabody J. O., “Vattikuti Institute prostatectomy: Contemporary technique and analysis of results,” Eur. Urol. 51 (3), 648657; discussion 657–648 (2007).
16. Murphy D. G., Kerger M., Crowe H., Peters J. S. and Costello A. J., “Operative details and oncological and functional outcome of robotic-assisted laparoscopic radical prostatectomy: 400 cases with a minimum of 12 months follow-up,” Eur. Urol. 55 (6), 13581367 (2009).
17. Hananouchi T., Sugano N., Nishii T., Nakamura N., Miki H., Kakimoto A., Yamamura M. and Yoshikawa H., “Effect of robotic milling on periprosthetic bone remodeling,” J. Orthop. Res. 25 (8), 10621069 (2007).
18. Kornprat P., Werkgartner G., Cerwenka H., Bacher H., El-Shabrawi A., Rehak P. and Mischinger H. J., “Prospective study comparing standard and robotically assisted laparoscopic cholecystectomy,” Langenbecks Arch. Surg. 391 (3), 14352443 (2006).
19. Wu J. C., Wu H. S., Lin M. S., Chou D. A. and Huang M. H., “Comparison of robot-assisted laparoscopic adrenalectomy with traditional laparoscopic adrenalectomy – 1 year follow-up,” Surg. Endosc. 22 (2), 463466 (2008).
20. Rodriguez F., Harris S., Jakopec M., Barrett A., Gomes P., Henckel J., Cobb J. and Davies B., “Robotic clinical trials of uni-condylar arthroplasty,” Int. J. Med. Robot 1 (4), 2028 (2005).
21. Zhou H. X., Guo Y. H., Yu X. F., Bao S. Y., Liu J. L., Zhang Y. and Ren Y. G., “Zeus robot-assisted laparoscopic cholecystectomy in comparison with conventional laparoscopic cholecystectomy,” Hepatobiliary Pancreat. Dis. Int. 5 (1), 115118 (2006).
22. Varma T. R. K. and Eldridge P., “Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery,” Int. J. Med. Robotics Comput. Assisted Surg. 2 (2), 107113 (2006).
23. Gurusamy K. S., Samraj K., Fusai G. and Davidson B. R., Robot assistant for laparoscopic cholecystectomy. Cochrane Database of Systematic Reviews, Issue 1, (2009).
24. Wagner A. A., Varkarakis I. M., Link R. E., Sullivan W. and Su L. M., “Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders, EndoAssist and AESOP: Apilot study,” Urology 68 (1), 7074 (2006).
25. Alessandrini M., De Padova A., Napolitano B., Camillo A. and Bruno E., “The AESOP robot system for video-assisted rigid endoscopic laryngosurgery,” Eur. Arch. Otorhinolaryngol. 265 (9), 11211123 (2008).
26. Calcerrada Diaz-Santos N., Blasco Amaro J. A., Cardiel G. A. and Aragones E. Andradas, “The safety and efficacy of robotic image-guided radiosurgery system treatment for intra- and extracranial lesions: A systematic review of the literature,” Radiother. Oncol. 89 (3), 245253 (2008).
27. Andrews D. W., Bednarz G., Evans J. J. and Downes B., “A review of 3 current radiosurgery systems,” Surg. Neurol. 66 (6), 559564 (2006).
28. Colombo F., Casentini L., Cavedon C., Scalchi P., Cora S. and Francescon P., “Cyberknife radiosurgery for benign meningiomas: Short-term results in 199 patients,” Neurosurgery 64 (2 Suppl.), A713 (2009).
29. Berryhill R. Jr., Jhaveri J., Yadav R., Leung R., Rao S., El-Hakim A. and Tewari A., “Robotic prostatectomy: A review of outcomes compared with laparoscopic and open approaches,” Urology 72 (1), 1523 (2008).
30. Ficarra V., Cavalleri S., Novara G., Aragona M. and Artibani W., “Evidence from robot-assisted laparoscopic radical prostatectomy: A systematic review,” Eur. Urol. 51 (1), 4555; discussion 56 (2007).
31. Aiono S., Gilbert J. M., Soin B., Finlay P. A. and Gordan A., “Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy,” Surg. Endosc. 16 (9), 12671270 (2002).
32. Gilbert J. M., “The EndoAssist robotic camera holder as an aid to the introduction of laparoscopic colorectal surgery,” Ann. Roy. College Surgeons Engl. 91 (5), 389393 (2009).
33. Tanoue K., Yasunaga T., Kobayashi E., Miyamoto S., Sakuma I., Dohi T., Konishi K., Yamaguchi S., Kinjo N., Takenaka K., Maehara Y. and Hashizume M., “Laparoscopic cholecystectomy using a newly developed laparoscope manipulator for 10 patients with cholelithiasis,” Surg. Endosc. 20 (5), 753756 (2006).
34. Yoshino I., Yasunaga T., Hashizume M. and Maehara Y., “A novel endoscope manipulator, Naviot, enables solo-surgery to be performed during video-assisted thoracic surgery,” Interact. Cardiovasc. Thoracic Surg. 4 (5), 404405 (2005).
35. Yamada K. and Kato S., “Robot-assisted thoracoscopic lung resection aimed at solo surgery for primary lung cancer,” Gen. Thoracic Cardiovasc. Surg. 56 (6), 292294 (2008).
36. Eljamel M. S., “Robotic neurological surgery applications: Accuracy and consistency or pure fantasy?Stereotactic Funct. Neurosurg. 87 (2), 8893 (2009).
37. Eljamel M. S., “Robotic application in epilepsy surgery,” Int. J. Med. Robot 2 (3), 233237 (2006).
38. Nishihara S., Sugano N., Nishii T., Miki H., Nakamura N. and Yoshikawa H., “Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty,” J. Arthroplasty 21 (7), 957966 (2006).
39. Schulz A. P., Seide K., Queitsch C., von Haugwitz A., Meiners J., Kienast B., Tarabolsi M., Kammal M. and Jurgens C., “Results of total hip replacement using the Robodoc surgical assistant system: Clinical outcome and evaluation of complications for 97 procedures,” Int. J. Med. Robot 3 (4), 301306 (2007).
40. Shoham M., Lieberman I. H., Benzel E. C., Togawa D., Zehavi E., Zilberstein B., Roffman M., Bruskin A., Fridlander A., Joskowicz L., Brink-Danan S. and Knoller N., “Robotic assisted spinal surgery – From concept to clinical practice,” Comput. Aided Surg. 12 (2), 105115 (2007).
41. Pechlivanis I., Kiriyanthan G., Engelhardt M., Scholz M., Lucke S., Harders A. and Schmieder K., “Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: First experiences and accuracy of screw placement,” Spine 34 (4), 392398 (2009).
42. Kornprat P., Werkgartner G., Cerwenka H., Bacher H., El-Shabrawi A., Rehak P. and Mischinger H. J., “Prospective study comparing standard and robotically assisted laparoscopic cholecystectomy,” Langenbecks Arch. Surg. 391 (3), 216221 (2006).
43. Heemskerk J., Zandbergen R., Maessen J. G., Greve J. W. and Bouvy N. D., “Advantages of advanced laparoscopic systems,” Surg. Endosc. 20 (5), 730733 (2006).
44. Sim H. G., Yip S. K. H. and Cheng C. W. S., “Equipment and technology in surgical robotics,” World J. Urol. 24 (2), 128135 (2006).
45. Rane A., Kommu S., Eddy B., Rimington P. and Anderson C., “Initial experience with the endoassist (R) camera holding robot in laparoscopic urological surgery,” Eur. Urol. Suppl. 6 (2), 186186 (2007).
46. Finlay P. A. and Morgan P., “PathFinder image guided robot for neurosurgery,” Industr. Robot Int. J. 30 (1), 3034 (2003).
47. Fei B. W., Ng W. S., Chauhan S. and Kwoh C. K., “The safety issues of medical robotics,” Reliability Eng. Syst.Safety 73 (2), 183192 (2001).
48. Varley P., “Techniques for development of safety-related software for surgical robots,” IEEE Trans. Information Technol. Biomed. 3 (4), 261267 (1999).
49. Guiochet J. and Vilchis A., “Safety analysis of a medical robot for tele-echography”, Proceedings of the IARP Workshop on Dependable Robots, Toulouse, France (2002).
50. Korb W., Kornfeld M., Birkfellner W., Boesecke R., Figl M., Fuerst M., Kettenbach J., Vogler A., Hassfeld S. and Kornreif G., “Risk analysis and safety assessment in surgical robotics: A case study on a biopsy robot,” Minim. Invasive Ther. Allied Technol. 14 (1), 2331 (2005).
51. Kilic D. and Croft E. A., “Safe planning for human–robot interaction,” J. Robotic Syst. 22 (7), 383396 (2005).
52. Scales C. D. Jr., Jones P. J., Eisenstein E. L., Preminger G. M. and Albala D. M., “Local cost structures and the economics of robot assisted radical prostatectomy,” J. Urol. 174 (6), 23232329 (2005).
53. Lotan Y., Cadeddu J. A. and Gettman M. T., “The new economics of radical prostatectomy: Cost comparison of open, laparoscopic and robot assisted techniques,” J. Urol. 172 (4 Pt 1), 14311435 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 308 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.