Skip to main content
×
Home

Model validation of a hexapod walker robot

  • István Kecskés (a1), Ervin Burkus (a1), Fülöp Bazsó (a2) (a3) and Péter Odry (a3) (a4)
Summary
SUMMARY

Our complete dynamical simulation-model realistically describes the real low-cost hexapod walker robot Szabad(ka)-II within prescribed tolerances under nominal load conditions. This validated model is novel, described in detail, for it includes in a single study: (a) digital controllers, (b) gearheads and DC motors, (c) 3D kinematics and dynamics of 18 Degree of Freedom (DOF) structure, (d) ground contact for even ground, (e) sensors and battery model. In our model validation: (a) kinematical-, dynamical- and digital controller variables were simultaneously compared, (b) differences of measured and simulated curves were quantified and qualified, (c) unknown model parameters were estimated by comparing real measurements with simulation results and applying adequate optimization procedures. The model validation helps identifying both model's and real robot's imperfections: (a) gearlash of the joints, (b) imperfection of approximate ground contact model, (c) lack of gearhead's internal non-linear friction in the model. Modeling and model validation resulted in more stable robot which performed better than its predecessors in terms of locomotion.

Copyright
Corresponding author
*Corresponding author. E-mail: kecskes.istvan@gmail.com
References
Hide All
1. Allen T. J., Quinn R. D., Bachmann R. J. and Ritzmann R. E., “Abstracted Biological Principles Applied with Reduced Actuation Improve Mobility of Legged Vehicles,” Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vol. 2 (2003) pp. 1370–1375.
2. Appl-DSP.com, “Szabad(ka)-ii robots,” Available from: www.szabadka-robot.com, 2011.
3. Arena P., Fortuna L., Frasca M., Patané L. and Pavone M., “Implementation and Experimental Validation of an Autonomous Hexapod Robot,” Proceedings of IEEE International Symposium on Circuits and Systems (2006) pp. 401–406.
4. Bailey S. A., Biomimetic Control with a Feedback coupled Nonlinear Oscillator: Insect Experiments, Design Tools, and Hexapedal Robot Adaptation Results Ph.D. Thesis (Stanford University, 2004).
5. Bartsch S., Birnschein T., Römmermann M., Hilljegerdes J., Kühn D. and Kirchner F., “Development of the six-legged walking and climbing robot spaceclimber,” J. Field Robot. 29 (3), 506532 (2012).
6. Bräunl T., Embedded Robotics, third edition, Springer-Verlag Berlin Heidelberg, 2008, e-ISBN 978-3-540-70534-5.
7. Burkus E. and Odry P., “Autonomous Hexapod Walker Robot “szabad(ka)”,” Proceedings of the IEEE 5th International Symposium on Intelligent Systems and Informatics (SISY), (2007) pp. 103–106.
8. Burkus E., Radosav D. and Odry P., “Autonomous Hexapod Walker Robot “szabad(ka) ii” - Software Modeling and Tools,” ITRO 2011, Zrenjanin, Serbia (2011).
9. Burkus E., Fodor J. C. and Odry P., “Structural and Gait Optimization of a Hexapod Robot with Particle Swarm Optimization,” IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY), IEEE (2013) pp. 147–152.
10. Burkus E. and Odry P., “Autonomous hexapod walker robot “szabad(ka)”,” Acta Polytech. Hung. 5 (1), 6985 (2008).
11. Carbone G. and Ceccarelli M., “A low-cost easy-operation hexapod walking machine,” Int. J. Adv. Robot. Syst. 5 (2), 161166 (2008).
12. Celaya E. and Albarral J. L., “Implementation of a Hierarchical Walk Controller for the Lauron iii Hexapod Robot,” International Conference on Climbing and Walking Robots (Clawar 2003) (2003) pp. 409–416.
13. Western Reserve University Center, “Biologically Inspired Robotics, Case Western Reserve University,” 2008 Available from: http://biorobots.case.edu/legs/.
14. CMU, “Artificial Intelligence and Applied Problem Solving from cmu, a World Leader in Mobile Robotics, Chiara- the Next Generation of Research Robots,” Available from: http://chiara-robot.org/chiara-brochure-july-2008.pdf, 2008.
15. Collins J. J. and Stewart I. N., “Coupled nonlinear oscillators and the symmetries of animal gaits,” J. Nonlinear Sci. 3 (1), 349392 (1993).
16. Corke I. P., Robotics toolbox for matlab (release 6). Manufacturing Science and Technology Pinjarra Hills, Australia (2001).
17. Currie J., Beckerleg M. and Collins J., “Software evolution of a hexapod robot walking gait,” Int. J. Intell. Syst. Technol. Appl. 8 (1), 382394 (2010).
18. Delcomyn F. and Nelson M. E., “Architectures for a biomimetic hexapod robot,” Robot. Auton. Syst. 30 (1), 515 (2000).
19. Ding X., Wang Z., Rovetta A. and Zhu J. M., “Locomotion Analysis of Hexapod Robot,” Climbing and Walking Robots (2010) pp. 291–310.
20. Vincent Duindam, Port-Based Modeling and Control for Efficient Bipedal Walking Robots Ph.D. Thesis (University of Twente, Enschede, 2006). Available from: http://eprints.eemcs.utwente.nl/1622/01/vduindamPhDthesis.pdf
21. Faulhaber F., “Precise Gearheads Efficiency Measurement,” Available from: www.faulhaber.com (2005).
22. Faulhaber.com, Faulhaber gmbh. Available from: www.faulhaber.com (2014).
23. Fielding M. R., Dunlop R. and Damaren C. J., “Hamlet: Force/Position Controlled Hexapod Walker-Design and Systems,” Proceedings of the 2001 IEEE International Conference on Control Applications, (CCA'01), IEEE (2001) pp. 984–989.
24. Georgiades C., Simulation and Control of an Underwater Hexapod Robot Ph.D. Thesis (Montreal: Department of Mechanical Engineering McGill University, 2005).
25. de Santos P. G., Cobano J. A., Garcia E., Estremera J. and Armada M. A., “A six-legged robot-based system for humanitarian demining missions,” Mechatronics 17 (8), 417430 (2007).
26. Grizzle J. W., Chevallereau C., Ames D. A. and Sinnet W. R., “3d Bipedal Robotic Walking: Models, Feedback Control, and Open Problems,” NOLCOS, Bologna, Italy (2010).
27. Haavisto O. and Hyötyniemi H., “Simulation Tool of a Biped Walking Robot Model,” Espoo, March 2004, Report 138, Helsinki University of Technology (2004).
28. Hauser K., Bretl T., Latombe J. and Wilcox B., “Motion Planning for a Six-Legged Lunar Robot,” The 7th International Workshop on the Algorithmic Foundations of Robotics, vol. 7 (2006) pp. 16–18.
29. Hutter M. and Näf D., “Quadruped Walking/Running Simulation,” Spring Term (2011) Semester-Thesis in ETH Zürich.
30. Jakimovski B., Meyer B. and Maehle E., “Self-Reconfiguring Hexapod Robot Oscar Using Organically Inspired Approaches and Innovative Robot Leg Amputation Mechanism,” International Conference on Automation, Robotics and Control Systems, ARCS 2009, Orlando, USA (2009).
31. Janrathitikarn O. and Long L. N., “Gait Control of a Six-Legged Robot on Unlevel Terrain using a Cognitive Architecture,” Aerospace Conference, 2008 IEEE (2008) pp. 1–9.
32. Kar D. C., “Design of statically stable walking robot: A review,” J. Robot. Syst. 20 (11), 671686 (2003).
33. Kecskés I. and Odry P., “Full Kinematic and Dynamic Modeling of “szabad(ka)-duna” hexapod,” Proceedings of the 7th International Symposium on Intelligent Systems and Informatics, SISY'09, IEEE (2009) pp. 215–219.
34. Kecskés I. and Odry P., “Fuzzy Controlling of Hexapod Robot Arm with Coreless dc Micromotor,” XXIII. MicroCAD, Miskolc, 2009 March (2009) pp. 19–20.
35. Kecskés I. and Odry P., “Walk Optimization for Hexapod Walking Robot,” Proceedings of 10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics (CINTI), Budapest, Hungary (2009) pp. 12–14.
36. Kecskés I. and Odry P., “Protective Fuzzy Control of Hexapod Walking Robot Driver in Case of Walking and Dropping,” In: Computational Intelligence in Engineering (Springer, 2010) pp. 205217.
37. Kecskes I. and Odry P., “Simple Definition of Adequate Fixed Time-Step Size of Szabad (ka)-ii robot model,” IEEE 9th International Conference on Computational Cybernetics (ICCC), IEEE (2013) pp. 315–320.
38. Kecskés I. and Odry P., “Optimization of PI and Fuzzy-PI Controllers on Simulation Model of Szabad (ka)-II walking robot,” Int. J. Adv. Robot. Syst., 2014, 11, 186. doi: 10.5772/59102
39. Kecskés I., Székács L., Fodor J. C. and Odry P., “Pso and ga Optimization Methods Comparison on Simulation Model of a Real Hexapod Robot,” EEE 9th International Conference on Computational Cybernetics (ICCC), IEEE (2013) pp. 125–130.
40. Kennedy B., Aghazarian H., Cheng Y., Garrett M., Hutsberger T., Magnone L., Okon A. and Robinson M., “Limbed Excursion Mechanical Utility Rover: Lemur ii,” 53rd International Astronautical Congress (2002).
41. Kikuuwe R., Takesue N., Sano A., Mochiyama H. and Fujimoto H., “Fixed-Step Friction Simulation: From classical coulomb model to modern continuous models,” IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2005), IEEE (2005) pp. 1009–1016.
42. Konyev M., Palis F., Zavgorodniy Y., Melnikov A., Rudskiy A., Telesh A., Schmucker U. and Rusin V., “Walking Robot Anton: Design, Simulation, Experiments,” Proceedings of 11th International Conference on Climbing and Walking Robots (CLAWAR) (2008) pp. 922–929.
43. Krishnan R., Electric Motor Drives Modeling, Analysis and Control (Prentice Hall, 2001).
44. Kubelka V., Oswald L., Pomerleau F., Colas F., Svoboda T. and Reinstein M., “Robust Data Fusion of Multimodal Sensory Information for Mobile Robots,” J. Field Robot. (Early View) (2014).
45. Lewinger W. A., Branicky M. S. and Quinn R. D., “Insect-Inspired, Actively Compliant Hexapod Capable of Object Manipulation,” Proceedings CLAWAR 2005, 8th International Conference on Climbing and Walking Robots 8, 6572 (2005).
46. Lin P.-C., Komsuoglu H. and Koditschek D. E., “A leg configuration measurement system for full-body pose estimates in a hexapod robot,” IEEE Trans. Robot. 21 (3), 411422 (2005).
47. Nelson A. L., Barlow G. J. and Doitsidis L., “Fitness functions in evolutionary robotics: A survey and analysis,” Robot. Auton. Syst. 57 (4), 345370 (2009).
48. Odry P., Burkus E. and Sram N., “Hexapod Robot as an Algorithm Developing Platform,” Available from: http://cneuro.rmki.kfki.hu/events/past/robot#odry, 2006.
49. Ohroku H. and Nonami K., “Omni-Directional Vision and 3d Animation Based Teleoperation of Hydraulically Actuated Hexapod Robot Comet-iv,” Transaction of the Japan Fluid Power System Society, Vol. 40 (2009) No. 6, pp. 117124; http://doi.org/10.5739/jfps.40.117.
50. Pap Z., Kecskés I., Burkus E., Bazsó F. and Odry P., “Optimization of the Hexapod Robot Walking by Genetic Algorithm,” IEEE 8th International Symposium on Intelligent Systems and Informatics (SISY), IEEE (2010) pp. 121–126.
51. Porta J. M. and Celaya E., “Reactive free-gait generation to follow arbitrary trajectories with a hexapod robot,” Robot. Auton. Syst. 47 (4), 187201 (2004).
52. Ramanathan G., Morandi B., West S. and Meyer B., “Scoop for Robotics, Implementing Bio-Inspired Hexapod Locomotion, eth Zurich,” Available from: http://se.inf.ethz.ch/old/projects/ganesh_ramanathan/-report.pdf (2010).
53. Regenstein K., Kerscher T., Birkenhofer C., Asfour T., Zllner J. and Dillmann R., “A Modular Approach for Controlling Mobile Robots,” Proceedings of CLAWAR 2007, 10th International Conference on Climbing and Walking Robots (2007).
54. Renda F., Giorelli M., Calisti M. and Cianchetti M., “Dynamic model of a multibending soft robot arm driven by cables,” IEEE Trans. Robot. 30 (5), 11091122 (2014).
55. Ricardo D. and Costa C., Hexapod Locomotion: A Nonlinear Dynamical Systems Approach Ph.D. Thesis (Universidade do Minho, Escola de Engenharia, 2010).
56. Rone W. S. and Ben-Tzvi P., “Continuum robot dynamics utilizing the principle of virtual power,” Trans. Robot. 30 (1), 275287 (2014).
57. Rudas J. I. and Fodor J., “Intelligent systems,” Int. J. Computers, Communications & Control 3, ISSN , Suppl. issue: Proceedings of ICCCC 2008, pp. 132138 (2008).
58. Saranli U., Buehler M. and Koditschek D. E., “Rhex: A simple and highly mobile hexapod robot,” Int. J. Robot. Res. 20 (7), 616631 (2001).
59. Fernando Silva M. and Tenreiro Machado J. A., “A historical perspective of legged robots,” J. Vib. Control 13 (9–10), 14471486 (2007).
60. Fernando Silva M. and Tenreiro Machado J. A., “A literature review on the optimization of legged robots,” J. Vib. Control 18 (12), 17531767 (2012).
61. Tedeschi F. and Carbone G., “Design issues for hexapod walking robots,” Robotics 3 (2), 181206 (2014).
62. Trochim W. M., Types of reliability in the research methods knowledge base, 2nd ed. Available from: http://www.socialresearchmethods.net/kb/reltypes.php (2006).
63. Veres J., Bio-Inspired Low-Cost Robotic Joint With Reduced Level Of Backlash And A Novel Approach - The Emulated Elastic Actuator. Ph.D. Thesis (Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, 2013). Available from: https://itk.ppke.hu/uploads/articles/162/file/thesis_book_verjoz_eng.pdf
64. Von A. Twickel, Hild M., Siedel T., Patel V. and Pasemann F., “Neural control of a modular multi-legged walking machine: Simulation and hardware,” Robot. Auton. Syst. 60 (2), 227241 (2012).
65. Woering R., Simulating the “First Steps” of a Walking Hexapod Robot Ph.D. thesis, Master's thesis (Eindhoven: Technische Universiteit Eindhoven, CST 2010 (2011)).
66. Zheng T., Godage I. S., Branson D. T., Kang R., Guglielmino E., Medrano-Cerda G. A. and Caldwell D. G., “Octopus Inspired Walking Robot: Design, Control and Experimental Validation,” IEEE International Conference on Robotics and Automation (ICRA), IEEE (2013) pp. 816–821.
67. Zielinska T. and Heng J., “Development of a walking machine: Mechanical design and control problems,” Mechatronics 12 (5), 737754 (2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
VIDEO
Supplementary Materials

Kecskes supplementary material
Kecskés supplementary material 1

 Video (52.5 MB)
52.5 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 51 *
Loading metrics...

Abstract views

Total abstract views: 657 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.