Skip to main content

Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches

  • Hossein Mirzaeinejad (a1) and Ali Mohammad Shafei (a1)

This study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers.

Corresponding author
*Corresponding author: E-mail:
Hide All
1. Asif, M., Khan, M. J. and Cai, N., “Adaptive sliding mode dynamic controller with integrator in the loop for nonholonomic wheeled mobile robot trajectory tracking,” Int. J. Control 87, 964975 (2014).
2. Blazic, S., “A novel trajectory tracking control law for wheeled mobile robots,” Robot. Autonomous Syst. 59, 10011007 (2011).
3. Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R., Casal, A. and Baader, A., “Force Strategies for Cooperative Tasks in Multiple Mobile Manipulation Systems,” In: The 7th International Symposium on Robotics Research 7 (Giralt, G. and Hirzinger, G., eds.) (Springer, Berlin, 1996) pp. 333–342.
4. Wiens, G. J., “Effects of Dynamic Coupling in Mobile Robotic Systems,” Proceedings of SME Robotics Research World Conference, Gaithersburg, Maryland (1989) pp. 43–57.
5. Saha, S. K. and Angeles, J., “Dynamics of non-holonomic mechanical systems using a natural orthogonal complement,” Trans. ASME, J. Appl. Mech. 58, 238243 (1991).
6. Hootsmanns, N. and Dubowsky, S., “The Motion Control of Manipulators on Mobile Vehicles,” Proceedings of the IEEE Conference on Robotics and Automation (1991) pp. 2336–2341.
7. Liu, K. and Lewis, F. L., “Decentralized Continuous Robust Controller for Mobile Robots,” Proceedings of the IEEE Conference on Robotics and Automation, Cincinnati, OH (1990) pp. 1822–1827.
8. Chen, M. W. and Zalzala, A. M. S., “Dynamic modeling and genetic-base trajectory generation for nonholonomic mobile manipulators,” Control Eng. Practice 5, 3948 (1997).
9. Yamamoto, Y. and Yun, X., “Coordinating locomotion and manipulation of a mobile manipulator,” IEEE Trans. Autom. Control 39, 13261332 (1994).
10. Thanjavur, K. and Rajagopalan, R., “Ease of Dynamic Modeling of Wheeled Mobile Robots (WMRs) Using Kane's Approach,” Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico (1997) pp. 2926–2931.
11. Tanner, H. G. and Kyriakopouos, K. J., “Mobile manipulator modeling with Kane's approach,” Robotica 19, 675690 (2001).
12. Korayem, M. H. and Shafei, A. M., “A new approach for dynamic modeling of n-viscoelastic-link robotic manipulators mounted on a mobile base,” Nonlinear Dyn. 79 27672786 (2015).
13. Korayem, M. H. and Shafei, A. M., “Motion equation of nonholonomic wheeled mobile robotic manipulator with revolute-prismatic joints using recursive Gibbs–Appell formulation,” Appl. Math. Modeling 39, 17011716 (2015).
14. Korayem, M. H., Shafei, A. M. and Seidi, E., “Symbolic derivation of governing equations for dual-arm mobile manipulators used in fruit-picking and the pruning of tall trees,” Comput. Electron. Agricultur. 105, 95102 (2014).
15. Korayem, M. H., Shafei, A. M. and Shafei, H. R., “Dynamic modeling of nonholonomic wheeled mobile manipulators with elastic joints using recursive Gibbs–Appell formulation,” Scientia Iranica Trans. b-Mech. Eng. 19, 10921104 (2012).
16. Huang, J., Wen, C., Wang, W. and Jiang, Z. P., “Adaptive output feedback tracking control of a nonholonomic mobile robot,” Automatica 50, 821831 (2014).
17. Canudas, C. de Wit, H. Khennouf, C. Samson and Sordalen, O. J., “Nonlinear control design for mobile robots,” In: Recent Trends in Mobile Robots (Zheng, Y. F., ed.) (Singapore, World Scientific, 1993) pp. 121156.
18. Oriolo, G., Luca, A. and Vandittelli, M., “WMR control via dynamic feedback linearization: Design, implementation, and experimental validationv,” IEEE Trans. Control Syst. Technol. 10, 835852 (2002).
19. Keighobadi, J., Menhaj, M. B. and Kabganian, M., “Feedback-linearzation and fuzzy controllers for trajectory tracking of wheeled mobile robots,” Kybernetes 39, 83106 (2010).
20. Xu, R. and Özgüner, Ü., “Sliding mode control of a class of underactuated systems,” Automatica 44, 233241 (2008).
21. Morin, P. and Samson, C., “Application of backstepping techniques to time-varying exponential stabilization of chained systems,” Eur. J. Control 3 1536 (1997).
22. Tamba, T. A., Hong, B. and Hong, K. S., “A path following control of an unmanned autonomous forklift,” Int. J. Control, Automat. Syst. 7, 113122 (2009).
23. Canudas de Wit, C. and Sordalen, O. J., “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Trans. Automat. Control 37, 17911797 (1992).
24. Marchand, N. and Alamir, M., “Discontinuous exponential stabilization of chained form systems,” Automatica 39, 343348 (2003).
25. Scaglia, G., Rosales, A., Quintero, L., Mut, V. and Agarwal, R., “A linearinterpolation-based controller design for trajectory tracking of mobile robots,” Control Eng. Practice 18, 318329 (2010).
26. Shojaei, Kh., “Neural adaptive output feedback formation control of type (m, s) wheeled mobile robots,” IET Control Theory Appl. 21, 504515 (2016). DOI: 10.1049/iet-cta.2016.0952
27. Chwa, D., “Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances,” IEEE Trans. Fuzzy Syst. 20, 587593 (2012).
28. Shojaei, K., Shahri, A. R. M, and Tarakameh, A. R., “Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties,” Robot. Comput.- Integr. Manuf. 27, 149204 (2011).
29. Shojaei, K. and Shahri, A. M., “Output feedback tracking control of uncertain non-holonomic wheeled mobile robots: A dynamic surface control approach,” IET Control Theory & Appl. 6, 216228 (2012).
30. Defoort, M., Floquet, T., Kokosy, A. and Perruquetti, W., “Integral sliding mode control for trajectory tracking of a unicycle type mobile robot,” Integr. Comput.-Aided Eng. 13, 277288 (2006).
31. Zdešar, A., Škrjanc, I. and Klančar, G., “Visual trajectory-tracking model-based control for mobile robots,” Int. J. Adv. Robot. Syst. 10, 113 (2013).
32. Xin, L., Wang, Q., She, J. and Li, Y., “Robust adaptive tracking control of wheeled mobile robot,” Robot. Autonomous Syst. 78, 3648 (2016).
33. Keymasi Khalaji, A., Ali, S. and Moosavian, A., “Dynamic modeling and tracking control of a car with n trailers,” J. Multi-body Syst. Dyn. 37, 211225 (2016).
34. Chwa, D., “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Trans. Control Syst. Technol. 12, 637644 (2004).
35. Keymasi Khalaji, A., Ali, S. and Moosavian, A., “Adaptive sliding mode control of a wheeled mobile robot towing a trailer,” Proc. Institut. Mech. Eng., I: J. Syst. Control Eng. 229, 169183 (2015).
36. Azizi, M. R. and Keighobadi, J., “Robust sliding mode trajectory tracking controller for a nonholonomic spherical mobile robot,” IFAC Proc. Vol. 47, 4541–4546 (2014).
37. Park, B. S., Yoo, S. J., Park, J. B. and Choi, Y. H., “A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots,” IEEE Trans. Control Syst. Technol. 18, 11991206 (2010).
38. Rashid, R., Elamvazuthi, I., Begam, M. and Arrofiq, M., “Fuzzy based navigation and control of a non-holonomic mobile robot,” J. Comput. 2, 130137 (2010).
39. Tzafestas, S. G., Deliparaschos, K. M. and Moustris, G. P., “Fuzzy logic path tracking control for autonomous non-holonomic mobile robots: Design of system on a chip,” Robot. Autonomous Syst. 58, 10171027 (2010).
40. Keighobadi, J. and Menhaj, M. B., “From nonlinear to fuzzy approaches in trajectory tracking control of wheeled mobile robots,” Asian J. Control 14, 960973 (2012).
41. Gu, D. and Hu, H., “Neural predictive control for a car-like mobile robot,” Int. J. Robot. Autonomous Syst. 39, 7386 (2002).
42. Azizi, M. R. and Keighobadi, J., “Point stabilization of nonholonomic spherical mobile robot using nonlinear model predictive control,” Robot. Autonomous Syst. 98, 347359 (2017).
43. Lu, P., “Optimal predictive control of continuous nonlinear system,” Int. J. Control 62, 633649 (1995).
44. Mirzaeinejad, H. and Mirzaei, M., “A novel method for non-linear control of wheel slip in anti-lock braking systems,” Control Eng. Practice 18, 918926 (2010).
45. Mirzaeinejad, H. and Mirzaei, M., “A new approach for modelling and control of two-wheel anti-lock brake systems,” Proc. Institut. Mech. Eng., Part K: J. Multi-body Dyn. 225, 179192 (2011).
46. Mirzaeinejad, H., Mirzaei, M. and Kazemi, R., “Enhancement of vehicle braking performance on split-k roads using optimal integrated control of steering and braking systems,” Proc. Institution Mech. Eng., Part K: J Multi-body Dynamics. 230, 401415 (2016).
47. Mirzaei, M. and Mirzaeinejad, H., “Fuzzy scheduled optimal control of integrated vehicle braking and steering systems,” IEEE/ASME Trans. Mechatron. 22, 23692379 (2017).
48. Slotine, J. J. E. and Li, W., Applied Nonlinear Control (Englewood Cliffs, Prentice-Hall, New Jersey, 1991).
49. Chen, W. H., Ballance, D. J. and Gawthrop, P. J., “Optimal control of nonlinear systems: A predictive control approach,” Automatica 39, 633641 (2003).
50. Khalil, H., Nonlinear Systems, 2nd ed. (Prentice Hall, New Delhi, 1996).
51. Li, Y., Zhu, L., Wang, Z. and Liu, T., “Trajectory Tracking for Nonholonomic Wheeled Mobile Robots based on an Improved Sliding Mode Control Method,” Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management (2009) pp. 55–58.
52. Vishnu Prasad, S. S., Pottakulath, V. and Ajmal, M. S., “Development of Backstepping Sliding Mode Tracking Control for Wheeled Mobile Robot,” Proceedings of the IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) (2014) pp. 1013–1018.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 68 *
Loading metrics...

* Views captured on Cambridge Core between 2nd August 2018 - 19th August 2018. This data will be updated every 24 hours.