Skip to main content

A modular bilateral haptic control framework for teleoperation of robots

  • Zeki Y. Bayraktaroglu (a1), Omer F. Argin (a2) and Sinan Haliyo (a3)

This paper presents a novel approach to implement bilateral control loops between local haptic devices and remote industrial manipulators using a layer of simulation and virtual reality. The remote scene of manipulation has been visualized in an open-source software environment, where forward and inverse kinematics of the manipulators can be computed. Therefore, the explicit knowledge of mathematical models of the robots is not required for the implementation of the proposed bilateral control schemes. A haptic coupling has been designed between the human operator and the task in the remote environment. Virtually introduced force feedback has contributed to the performance of the proposed bilateral loop by facilitating the adaptation of unexperienced human operators. Teleoperation of one remote manipulator has been experimentally demonstrated with the proposed controllers. Structural modularity of the bilateral haptic control schemes makes them directly extendable for the teleoperation of multiple collaborative robots. Stability and transparency of the proposed bilateral haptic controllers have been theoretically and experimentally investigated.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Bolopion, A., Cagneau, B., Haliyo, D. and Régnier, S., “Analysis of stability and transparency for nanoscale force feedback in bilateral coupling,” J. Micro-Nano Mechatron. 4 (4), 145158 (2008).
2. Mohand Ousaid, A., Bolopion, A., Haliyo, S., Régnier, S. and Hayward, V., “Stability and Transparency Analysis of a Teleoperation Chain for Microscale Interaction,” Proceedings of the IEEE International Conference on Robotics and Automation (2014) pp. 5946–5951.
3. Anderson, R. J. and Spong, M. W., “Asymptotic Stability for Force Reflecting Teleoperators with Time Delay,” Proceedings of the IEEE International Conference on Robotics and Automation (1989) pp. 1618–1625.
4. Anderson, R. J. and Spong, M. W., “Bilateral control of teleoperators with time delay,” IEEE Trans. Automat. Control 34 (5), 494501 (1989).
5. Niemeyer, G. and Slotine, J. J. E., “Stable adaptive teleoperation,” IEEE J. Ocean. Eng. 16 (1), 152162 (1991).
6. Niemeyer, G. and Slotine, J. J. E., “Transient Shaping in Force Reflecting Teleoperation,” Proceedings of the International Conference on Advanced Robotics (1991) pp. 261–266.
7. Zhu, W. H. and Salcudean, S. E., “Teleoperation with Adaptive Motion/Force Control,” Proceedings of the IEEE International Conference on Robotics and Automation (1999) pp. 231–237.
8. Hashemzadeh, F., Hassanzadeh, T., Tavakoli, M. and Alizadeh, G., “Adaptive control for state synchronization of nonlinear haptic telerobotic systems with asymmetric varying time delays,” J. Intell. Robot. Syst. 68 (3), 245259 (2012).
9. Sarras, I., Nuño, E. and Basañez, L., “An adaptive controller for nonlinear teleoperators with variable time-delays,” J. Franklin Inst. 351 (10), 48174837 (2014).
10. Hou, X. and Sourina, O., “Real-time adaptive prediction method for smooth haptic rendering,” Cornell University Library, preprint arXiv 1603.06674 (2016).
11. Kim, B.-Y. and Ahn, H.-S., “A design of bilateral teleoperation systems using composite adaptive controller,” Control Eng. Pract. 21 (12), 16411652 (2013).
12. Alfi, A. and Farrokhi, M., “A simple structure for bilateral transparent teleoperation systems with time delay,” J. Dyn. Syst., Meas. Control 130 (4), 044502 (2008).
13. Alfi, A. and Farrokhi, M., “Force reflecting bilateral control of master–slave systems in teleoperation,” J. Intell. Robot. Syst. 52 (2), 209232 (2008).
14. Mohammadi, L., Alfi, A. and Xu, B., “Robust bilateral control for state convergence in uncertain teleoperation systems with time-varying delay: A guaranteed cost control design,” Nonlinear Dyn. 88 (2), 14131426 (2017).
15. Aracil, R. et al., “Bilateral control by state convergence based on transparency for systems with time delay,” Robotics Auton. Syst. 61 (2), 8694 (2013).
16. Alfi, A. et al.Design and implementation of robust-fixed structure controller for telerobotic systems,” J. Intell. Robot. Syst. 83 (2), 253269 (2016).
17. Chopra, N., Spong, M. W., Ortega, R. and Barabanov, N. E., “On tracking performance in bilateral teleoperation,” IEEE Trans. Robot. 22 (4), 861866 (2006).
18. Chopra, N., Berestesky, P. and Spong, M. W., “Bilateral teleoperation over unreliable communication networks,” IEEE Trans. Control Syst. Technol. 16 (2), 304313 (2008).
19. Lee, D. and Spong, M. W., “Passive bilateral teleoperation with constant time delay,” IEEE Trans. Robot. 22 (2), 269281 (2006).
20. Nuño, E., “Haptic Guidance with Force Feedback to Assist Teleoperation Systems Via High Speed Networks,” Proceedings of the IEEE International Symposium on Robotics (2006) pp. 1–14.
21. Nuño, E., Ortega, R., Barabanov, N. and Basañez, L., “A globally stable PD controller for bilateral teleoperators,” IEEE Trans. Robot. 24 (3), 753758 (2008).
22. Nuño, E., Basañez, L. and Ortega, R., “Passivity-based control for bilateral teleoperation: A tutorial,” Automatica 47, 485495 (2011).
23. Li, Z., Ding, L., Gao, H., Duan, G. and Su, C. Y., “Trilateral teleoperation of adaptive fuzzy force/motion control for nonlinear teleoperators with communication random delays,” IEEE Trans. Fuzzy Syst. 21 (4), 610624 (2013).
24. Li, Z. and Su, C. Y., “Neural-adaptive control of single-master–multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties,” IEEE Trans. Neural Netw. Learn. Syst. 24 (9), 14001413 (2013).
25. Li, Z., Cao, X. and Ding, N., “Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays,” IEEE Trans. Fuzzy Syst. 19 (4), 745757 (2011).
26. Lu, Z., Huang, P. and Liu, Z., “Predictive approach for sensorless bimanual teleoperation under random time delays with adaptive fuzzy control,” IEEE Trans. Ind. Electron. 65 (3), 24392448 (2018).
27. Zhao, Z., Huang, P., Lu, Z. and Liu, Z., “Augmented reality for enhancing tele-robotic system with force feedback,” Robot. Auton. Syst. 96, 93101 (2017).
28. Desbats, P., Geffard, F., Piolain, G. and Coudray, A., “Force-feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant,” Ind. Robot 33 (3), 178186 (2006).
29. Soyguder, S. and Abut, T., “Haptic industrial robot control with variable time delayed bilateral teleoperation,” Ind. Robot 43 (4), 390402 (2016).
30. Khademian, B. and Hashtrudi-Zaad, K., “A framework for unconditional stability analysis of multimaster/multislave teleoperation systems,” IEEE Trans. Robot. 29 (3), 684694 (2013).
31. Razi, K. and Hashtrudi-Zaad, K., “Analysis of coupled stability in multilateral dual-user teleoperation systems,” IEEE Trans. Robot. 30 (3), 631641 (2014).
32. Li, J., Tavakoli, M. and Huang, Q., “Absolute stability of multi-dof multilateral haptic systems,” IEEE Trans. Control Syst. Technol. 22 (6), 23192328 (2014).
33. Lu, Z. et al., “Enhanced transparency dual-user shared control teleoperation architecture with multiple adaptive dominance factors,” Int. J. Control. Autom. Syst. 15 (5), 23012312 (2017).
34. Colgate, J. E., Stanley, M. C. and Brown, J. M., “Issues in the Haptic Display of Tool Use,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (1995) pp. 140–145.
35. Zilles, C. B. and Salisbury, J. K., “A constraint-based god-object method for haptic display,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (1995) pp. 146–151.
36. Howard, B. M. and Vance, J. M., “Desktop haptic virtual assembly using physically based modelling,” Virtual Reality 11 (4), 207215 (2007).
37. Hou, X. and Sourina, O., “Stable adaptive algorithm for six degrees-of-freedom haptic rendering in a dynamic environment,” Vis. Comput. 29 (10), 10631075 (2013).
38. Blender, “” (2017).
39. Arimoto, S. and Miyazaki, F., “Stability and Robustness of PID Feedback Control for Robot Manipulators of Sensory Capability,” Proceedings of the International Symposium on Robotics Research (1984) pp. 783–799.
40. Khalil, W. and Dombre, E., “Modeling, identification and control of robots,” Kogan Page Science Paper Edition, Butterworth-Heinemann (2004). ISBN-10: 190399666X
41. Nuño, E., Basañez, L. and Prada, M., “Asymptotic Stability of Teleoperators with Variable Time-Delays,” Proceedings of the IEEE International Conference on Robotics and Automation (2009) pp. 4332–4337.
42. Nuño, E., Basañez, L., Ortega, R. and Spong, M. W., “Position tracking for non-linear teleoperators with variable time Delay,” Int. J. Robot. Res. 28 (7), 895910 (2009).
43. Hua, C. C. and Liu, X. P., “Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays,” IEEE Trans. Robot. 26 (5), 895910 (2010).
44. Slotine, J. J. E. and Li, W., Applied Nonlinear Control (Prentice Hall, 1991).
45. Lawrence, D., “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robot. Autom. 9 (5), 624637 (1993).
46. Hokayem, P. F. and Spong, M. W., “Bilateral teleoperation: An historical survey,” Automatica 42 (12), 20352057 (2006).
47. Stäubli Technical Documentation Interactive CD-ROM, “Arm–RX series 160 family Instruction Manual” (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Bayraktaroglu et al. supplementary material
Bayraktaroglu et al. supplementary material 1

 Video (15.0 MB)
15.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed