Skip to main content Accessibility help
×
×
Home

Modular-robotic structures for scalable collective actuation

  • Jakub Lengiewicz (a1), Michał Kursa (a1) and Paweł Hołobut (a1)
Summary

We propose a new class of modular-robotic structures, intended to produce forces which scale with the number of modules. We adopt the concept of a spherical catom and extend it by a new connection type which is relatively strong but static. We examine analytically and numerically the mechanical properties of two collective-actuator designs. The simulations are based on the discrete element method (DEM), with friction and elastic deformations taken into account. One of the actuators is shown to generate forces proportional to its volume. This property seems necessary for building modular structures of useful strength and dimensions.

Copyright
Corresponding author
*Corresponding author. E-mail: jleng@ippt.pan.pl
References
Hide All
1. Støy, K., Emergent Control of Self-Reconfigurable Robots Ph.D. Thesis (The Maersk Mc-Kinney Moller Institute for Production Technology, University of Southern Denmark, Odense, Denmark, 2004).
2. Yim, M., Wei-Min Shen, B. Salemi, Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G. S., “Modular self-reconfigurable robot systems,” IEEE Robot. Autom. Mag. 14 (1), 4352 (2007).
3. Goldstein, S. C., Campbell, J. D. and Mowry, T. C., “Programmable matter,” IEEE Comput. 38 (6), 99101 (2005).
4. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K. and Kokaji, S., “A 3-D Self-Reconfigurable Structure,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Leuven (1998) pp. 432–439.
5. Tomita, K., Kurokawa, H., Yoshida, E., Kamimura, A., Murata, S. and Kokaji, S., “Lattice-based modular self-reconfigurable systems,” In: Robots and Lattice Automata (Sirakoulis, G. Ch. and Adamatzky, A., eds.) (Springer, 2015).
6. Rus, D. and Vona, M., “Crystalline robots: Self-reconfiguration with compressible unit modules,” Auton. Robots 10 (1), 107124 (2001).
7. Romanishin, J., Gilpin, K. and Rus, D., “M-Blocks: Momentum-Driven, Magnetic Modular Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo (2013) pp. 4288–4295.
8. Tolley, M. T., Kalontarov, M., Neubert, J., Erickson, D. and Lipson, H., “Stochastic modular robotic systems: A study of fluidic assembly strategies,” IEEE Trans. Robot. 26 (3), 518530 (2010).
9. Campbell, J. and Pillai, P., “Collective actuation,” Int. J. Robot. Res. 27 (3–4), 299314 (2008).
10. Christensen, D. J., Campbell, J. and Støy, K., “Anatomy-based organization of morphology and control in self-reconfigurable modular robots,” Neural Comput. Appl. 19 (6), 787805 (2010).
11. De Rosa, M., Goldstein, S. C., Lee, P., Campbell, J. and Pillai, P., “Scalable Shape Sculpting Via Hole Motion: Motion Planning in Lattice-Constrained Modular Robots,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Orlando, Florida (2006) pp. 1462–1468.
12. Bhat, P., Kuffner, J., Goldstein, S. C. and Srinivasa, S., “Hierarchical Motion Planning for Self-Reconfigurable Modular Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing (2006) pp. 886–891.
13. Fitch, R. and Butler, Z., “Million module march: Scalable locomotion for large self-reconfiguring robots,” Int. J. Robot. Res. 27 (3–4), 331343 (2008).
14. Mabed, H. and Bourgeois, J., “Towards Programmable Material: Flexible Distributed Algorithm for Modular Robots Shape-Shifting,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, Besacon (2014) pp. 408–414.
15. White, P. J., Revzen, S., Thorne, C. E. and Yim, M., “A general stiffness model for programmable matter and modular robotic structures,” Robotica 29, 103121 (2011).
16. Hołobut, P., Kursa, M. and Lengiewicz, J., “A Class of Microstructures for Scalable Collective Actuation of Programmable Matter,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Chicago, Illinois (2014) pp. 3919–3925.
17. Kirby, B. T., Aksak, B., Campbell, J. D., Hoburg, J. F., Mowry, T. C., Pillai, P. and Goldstein, S. C., “A Modular Robotic System using Magnetic Force Effectors,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, San Diego, California (2007) pp. 2787–2793.
18. Reid, J., Vasilyev, V. and Webster, R. T., “Building Micro-Robots: A Path to Sub-mm3 Autonomous Systems,” Nanotech 3, 174177 (2008).
19. Karagozler, M. E., Goldstein, S. C. and Reid, J. R., “Stress-Driven MEMS Assembly + Electrostatic Forces = 1 mm Diameter Robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, St. Louis, Missouri (2009) pp. 2763–2769.
20. Karagozler, M. E., Thaker, A., Goldstein, S. C. and Ricketts, D. S., “Electrostatic Actuation and Control of Micro Robots using a Post-Processed High-Voltage SOI CMOS Chip,” Proceedings of the IEEE International Symposium on Circuits and Systems, IEEE, Rio de Janeiro (2011) pp. 2509–2512.
21. Neubert, J., Rost, A. and Lipson, H., “Self-soldering connectors for modular robots,” IEEE Trans. Robot. 30 (6), 13441357 (2014).
22. Dzwolak, W. and Marszalek, P. E., “Zipper-like properties of [poly(l-lysine) + poly(l-glutamic acid)] beta-pleated molecular self-assembly,” Chem. Commun. 44, 55575559 (2005).
23. Thompson, D., Sikora, M., Szymczak, P. and Cieplak, M., “A multi-scale molecular dynamics study of the assembly of micron-size supraparticles from 30 nm alkyl-coated nanoparticles,” Phys. Chem. Chem. Phys. 15 (21), 81328143 (2013).
24. Knaian, A. N., Electropermanent Magnetic Connectors and Actuators: Devices and Their Application in Programmable Matter Ph.D. Thesis (MIT, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States, 2010).
25. McNeill Alexander, R., Principles of Animal Locomotion (Princeton University Press, Princeton, New Jersey, United States, 2006).
26. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J. and Thoeni, K., “Yade Reference Documentation,” In: Yade Documentation (Šmilauer, V., ed.) (The Yade Project, 1st ed., online), http://yade-dem.org. 2010.
27. Šmilauer, V. and Chareyre, B., “Yade DEM Formulation,” In: Yade Documentation (Šmilauer, V., ed.) (The Yade Project, 1st ed., online), http://yade-dem.org/doc/formulation.html,” 2010.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed