Skip to main content Accessibility help

Neuroadaptive control of elastic-joint robots using robust performance enhancement

  • C.J.B. Macnab (a1) and G.M.T. D'Eleuterio (a1)

A neuroadaptive control scheme for elastic-joint robots is proposed that uses a relatively small neural network. Stability is achieved through standard Lyapunov techniques. For added performance, robust modifications are made to both the control law and the weight update law to compensate for only approximate learning of the dynamics. The estimate of the modeling error used in the robust terms is taken directly from the error of the network in modeling the dynamics at the currant state. The neural network used is the CMAC-RBF Associative Memory (CRAM), which is a modification of Albus's CMAC network and can be used for robots with elastic degrees of freedom. This results in a scheme that is computationally practical and results in good performance.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed