Skip to main content Accessibility help
×
×
Home

Objectives, criteria and methods for the design of the SmartHand transradial prosthesis

  • Christian Cipriani (a1), Marco Controzzi (a1) and Maria Chiara Carrozza (a1)
Summary

This paper presents the requirements, design criteria and methodology used to develop the design of a new self-contained prosthetic hand to be used by transradial amputees. The design is based on users' needs, on authors background and knowledge of the state of the art, and feasible fabrication technology with the aim of replicating as much as possible the functionality of the human hand. The paper focuses on the design approach and methodology which is divided into three steps: (i) the mechanical actuation units, design and actuation distribution; (ii) the mechatronic development and finally (iii) the controller architecture design. The design is presented here and compared with significant commercial devices and research prototypes.

Copyright
Corresponding author
*Corresponding author. E-mail: christian@arts.sssup.it
References
Hide All
1.Dellon, B. and Matsuoka, Y., “Prosthetics, exoskeletons, and rehabilitation,” IEEE Robot. Autom. Mag. 14 (1), 3034 (2007).
2.Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai, L. and Cipriani, C., “Design of a cybernetic hand for perception and action,” Biol. Cybern. 95 (6), 629644 (2006).
3.Craelius, W., “The bionic man: Restoring mobility,” Science 295, 10181021 (2002).
4.Riso, R. R., “Strategies for providing upper extremity amputees with tactile and hand position feedback – Moving closer to the bionic arm,” Technol. Health Care 7, 401409 (1999).
5.Pons, J. L., Ceres, R. and Pfeiffer, F., “Multifingered dextrous robotics hand design and control: a review,” Robotica 17, 661674, (1999).
6.Light, C. M. and Chappell, P. H., “Development of a lightweight and adaptable multiple-axis hand prosthesis,” Med. Eng. Phys. 22, 679684 (2000).
7.Kyberd, P. J., Holland, O. E., Chappel, P. H., Smith, S., Tregdigo, R., Bagwell, P. J., and Snaith, M., “Marcus: A two degree of freedom hand prosthesis with hierarchical grip control,” IEEE Trans. Rehabil. Eng. 3 (1), 7076 (1995).
8.Massa, B., Roccella, S., Carrozza, M. C. and Dario, P., “Design and Development of an Underactuated Prosthetic Hand,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington DC (2002) pp. 33743379.
9.Pons, J. L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S. and Van Moorleghem, W., “The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects,” Auton. Robots 16, 143163 (2004).
10.Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R. and Bretthauer, G., “A hydraulically driven multifunctional prosthetic hand,” Robotica 23, 293299 (2005).
11.Otto Bock Healthcare, Minneapolis, MN (2009). [Online]. Available http://www.ottobockus.com
12.Touch EMAS Ltd, Edinburgh, U.K. (2009) [Online]. Available: http://www.touchbionics.com
13.Nightingale, J. M., “Microprocessor control of an artificial arm,” J. Microcomput. Appl. 8, 167173 (1985).
14.Kyberd, P. J., Mustapha, N., Carnegie, F. and Chappell, P. H., “Clinical experience with a hierarchically controlled myoelectric hand prosthesis with vibro-tactile feedbackProsthet. Orthot. Int. 17 (1), 5664 (1993).
15.Pylatiuk, C., Mounier, S., Kargov, A., Schulz, S. and Bretthauer, G., “Progress in the development of a multifunctional hand prosthesis,” Proceedings of IEEE EMBS International Conference, San Francisco, CA, 2, 42624263 (2004).
16.The SMARTHAND Project (The Smart Bio-adaptive Hand Prosthesis, NMP Project # 2006 - 33423).
17.Rodriguez, F. J., Ceballos, D., Schuttler, M., Valero, A., Valderrama, E., Stieglitz, T. and Navarro, X., “Polyimide cuff electrodes for peripheral nerve stimulation,” J. Neurosci. Methods 98, 105118 (2000).
18.Micera, S., Navarro, X., Carpaneto, J., Citi, L., Tonet, O., Rossini, P. M., Carrozza, M. C., Hoffmann, K. P., Vivó, M., Yoshida, K. and Dario, P., “On the Use of Longitudinal Intrafascicular Peripheral Interfaces for the Control of Cybernetic Hand Prostheses in Amputees,” IEEE Trans. Neural Syst. Rehabil. Engineering 16 (5), 453472 (2008).
19.Kyberd, P., Chappel, R. H. and Gow, D., “Foreword by the guest editors,” Robotica 23, 273274 (2005).
20.Pylatiuk, C. and Schulz, S., “Using the Internet for an Anonymous Survey of Myoelectrical Prosthesis Wearers,” Proceedings of the Myoelectric Controls Symposium (MEC 2005), Fredericton, New Brunswick, Canada (2005).
21.Sollerman, C. and Ejeskar, A., “Sollerman hand function test. A standardized method and its use in tetraplegic patients,” Scand. J. Plast. Reconstr. Surg. Hand Surg. 29, 167176 (1995).
22.Hirose, S., “Connected Differential Mechanism and its Applications,” Proceedings of the International Conference on Advanced Robotics, Tokyo, Japan (1985) pp. 319326.
23.Cipriani, C., Zaccone, F., Micera, S. and Carrozza, M. C., “On the Shared Control of an EMG-Controlled Prosthetic Hand: Analysis of User–Prosthesis InteractionIEEE Trans. Robot. 24 (1), 170184 (2008).
24.Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M. C. and Dario, P., “Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications,” IEEE/ASME Trans. Mechatronics 12 (4), 418429 (2007).
25.Stellin, G., Cappiello, G., Roccella, S., Becchi, F., Metta, G., Carrozza, M. C., Dario, P. and Sandini, G., “Preliminary Design of an Anthropomorphic Dexterous Hand for a 2-Years-Old Humanoid: Towards Cognition” Proceedings of the 2006 1st IEEE/RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (2006) pp. 290–295.
26.Kapandji, I. A., “The Physiology of the Joints – Volume one Upper limb,” 2nd edition, Churchill Livingstone, Edinburgh and London (1982).
27.Webster, J. G.. Tactile Sensors for Robotics and Medicine (John Wiley & Sons, New York, 1988).
28.Buchholz, B., Armstrong, T. J. and Goldstein, S. A., “Anthropometric data for describing the kinematics of the human hand,” Ergonomics 35 (3), 261273 (1992).
29.Ingram, J. N., Körding, K. P., Howard, I. S. and Wolpert, D. M., “The statistics of natural hand movements,” Exp. Brain Res. 188 (2), 223236 (2008).
30.Kyberd, P., Light, C., Chappell, P. H., Nightingale, J. M., Whatley, D. and Evans, M., “The design of anthropomorphic prosthetic hands: A study of the Southampton Hand,” Robotica 19, 593600 (2001).
31.Motion Control, Inc. Salt Lake City, UT (2009). [Online]. Available http://www.utaharm.com
32.Lundborg, G. and Rosen, B., “Sensory substitution in prosthetics,” Hand Clin. 17 (3), 481488 (2001).
33.Dhillon, G. S. and Horch, K. W., “Direct neural sensory feedback and control of a prosthetic arm,” IEEE TNSRE 13 (4), 468472 (2005).
34.Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N. and Dewald, J. P. A., “Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation,” PNAS 104 (50), 2006120066 (2007).
35.Ehrsson, H. H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P. and Lundborg, G., “Upper limb amputees can be induced to experience a rubber hand as their own,” Brain 131 (12), 34433452 (2008).
36.Rosén, B., Ehrsson, H., Antfolk, C., Cipriani, C., Sebelius, F. and Lundborg, G., “Sensory transfer into an advanced hand prosthesis,” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery 43 (5), 260266 (2009).
37.Botvinick, M. and Cohen, J., “Rubber hands ‘feel’ touch that eyes see,” Nature 391, 756 (1998).
38.Persichetti, A., Vecchi, F. and Carrozza, M. C., “Optoelectronic-based flexible contact sensor for robot finger application,” Proceedings of the International Conference on Rehabilitation Robotics (2007).
39.Edin, B. B., Ascari, L., Beccai, L., Roccella, S., Cabibihan, J-J. and Carrozza, M. C., “Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift tasks,” Brain Res. Bull. 75 (6), 785795 (2008).
40.Heim, W., “Microprocessor technology for powered upper extremity prosthetic control systems,” Robotica 23, 275276 (2005).
41.Micera, S., Carrozza, M. C., Beccai, L., Vecchi, F. and Dario, P., “Hybrid bionic systems for the replacement of hand function,” Proc. IEEE 94 (9), 17521762 (2006).
42.Pons, J. L., Ceres, R., Rocon, E., Reynaerts, D., Saro, B., Levin, S. and Van Moorleghem, W., “Objectives and technological approach to the development of the multifunctional MANUS upper limb prosthesis,” Robotica 23, 301310 (2005).
43.Light, C. M., Chappell, P. H., Hudgins, B. and Engelhart, K., “Intelligent multifunction myoelectric control of hand prostheses,” J. Med. Eng. Technol. 26 (4), 139146 (2002).
44.Cipriani, C., Controzzi, M., Vecchi, F. and Carrozza, M. C., “Embedded Hardware Architecture Based on Microcontrollers for the Action and Perception of a Transradial Prosthesis,” IEEE RAS/EMBS 2008 International Conference on Biomedical Robotics and Biomechatronics (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed