Skip to main content
×
×
Home

Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties

  • Brahim Brahmi (a1), Maarouf Saad (a1), Cristobal Ochoa Luna (a2), Philippe S. Archambault (a2) and Mohammad H. Rahman (a3)...
Summary

This paper investigates the passive and active control strategies to provide a physical assistance and rehabilitation by a 7-DOF exoskeleton robot with nonlinear uncertain dynamics and unknown bounded external disturbances due to the robot user's physiological characteristics. An Integral backstepping controller incorporated with Time Delay Estimation (BITDE) is used, which permits the exoskeleton robot to achieve the desired performance of working under the mentioned uncertainties constraints. Time Delay Estimation (TDE) is employed to estimate the nonlinear uncertain dynamics of the robot and the unknown disturbances. To overcome the limitation of the time delay error inherent of the TDE approach, a recursive algorithm is used to further reduce its effect. The integral action is employed to decrease the impact of the unmodeled dynamics. Besides, the Damped Least Square method is introduced to estimate the desired movement intention of the subject with the objective to provide active rehabilitation. The controller scheme is to ensure that the robot system performs passive and active rehabilitation exercises with a high level of tracking accuracy and robustness, despite the unknown dynamics of the exoskeleton robot and the presence of unknown bounded disturbances. The design, stability, and convergence analysis are formulated and proven based on the Lyapunov–Krasovskii functional theory. Experimental results with healthy subjects, using a virtual environment, show the feasibility, and ease of implementation of the control scheme. Its robustness and flexibility to deal with parameter variations due to the unknown external disturbances are also shown.

Copyright
Corresponding author
*Corresponding author. E-mail: brahim.brahmi.1@ens.etsmtl.ca
References
Hide All
1. Sidney, S., Rosamond, W. D., Howard, V. J. and Luepker, R. V., “The ‘heart disease and stroke statistics-2013 update’ and the need for a national cardiovascular surveillance system,” Circulation 127 (1), 2123 (2013).
2. De Morand, A., Pratique de la Rééducation Neurologique (Elsevier Masson, Paris, 2014).
3. Xie, S., Advanced Robotics for Medical Rehabilitation (Springer, New York, NY, 2016).
4. Brahim, B., Maarouf, S., Luna, C. O., Abdelkrim, B. and Rahman, M., “Adaptive Iterative Observer Based on Integral Backstepping Control for Upper Extremity Exoskelton Robot,” Proceedings of the 8th International Conference on Modelling, Identification and Control (ICMIC), (2016) pp. 886–891.
5. Brahim, B., Rahman, M. H., Saad, M. and Luna, C. O., “Iterative estimator-based nonlinear backstepping control of a robotic exoskeleton world academy of science, engineering and technology,” Int. J. Mech. Aerosp. Ind. Mechatronic Manuf. Eng. 10 (8), 13131319 (2016).
6. Rahman, M. H., Rahman, M. J., Cristobal, O., Saad, M., Kenné, J.-P. and Archambault, P. S., “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica 33 (1), 19 (2015).
7. Rahman, M. H., Saad, M., Kenné, J.-P. and Archambault, P. S., “Control of an exoskeleton robot arm with sliding mode exponential reaching law,” Int. J. Control, Autom. Syst. 11 (1), 92104 (2013).
8. Brahim, B., Ochoa-Luna, C., Saad, M., Assad-Uz-Zaman, M., Islam, M. R. and Rahman, M. H., “A New Adaptive Super-Twisting Control for an Exoskeleton Robot with Dynamic Uncertainties,” Proceedings of the 2017 IEEE Great Lakes Biomedical Conference (GLBC) (2017) pp. 1–1.
9. Slotine, J.-J. E. and Li, W., Applied Nonlinear Control (Prentice-Hall Englewood, Cliffs, NJ, 1991).
10. Rigatos, G., Siano, P. and Abbaszadeh, M., “Nonlinear H-infinity control for 4-DOF underactuated overhead cranes,” Trans. Inst. Meas. Control 40 (7), 23642377 (2017).
11. Khalil, H. K. and Grizzle, J., Nonlinear Systems (Prentice hall, New Jersey, 1996).
12. Young, K. D., Utkin, V. I. and Ozguner, U., “A control engineer's guide to sliding mode control,” IEEE Trans. Control Syst. Technol. 7 (3), 328342 (1999).
13. Fridman, L., “The Problem of Chattering: An Averaging Approach,” Variable Structure Systems, Sliding Mode and Nonlinear Control (Springer, 1999) pp. 363386.
14. Brahmi, B., Saad, M., Rahman, M. H. and Ochoa-Luna, C., “Cartesian trajectory tracking of a 7-DOF exoskeleton robot based on human inverse kinematics,” IEEE Trans. Syst. Man Cybernetics: Syst. PP (99), 112 (2017).
15. Zhou, J. and Wen, C., Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations (Springer-Verlag, Berlin Heidelberg, 2008).
16. Chen, W., Ge, S. S., Wu, J. and Gong, M., “Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori,” IEEE Trans. Neural Networks Learning Syst. 26 (9), 18421854 (2015).
17. Li, Z., Huang, Z., He, W. and Su, C.-Y., “Adaptive impedance control for an upper limb robotic exoskeleton using biological signals,” IEEE Trans. Ind. Electron. 64 (2), 16641674 (2017).
18. Li, Z., Su, C.-Y., Li, G. and Su, H., “Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs,” IEEE Trans. Fuzzy Syst. 23 (3), 555566 (2015).
19. Yoo, B. K. and Ham, W. C., “Adaptive control of robot manipulator using fuzzy compensator,” IEEE Trans. Fuzzy Syst. 8 (2), 186199 (2000).
20. Youcef-Toumi, K. and Ito, O., “A time delay controller for systems with unknown dynamics,” J. Dyn. Syst. Meas. Control 112 (1), 133142 (1990).
21. Brahmi, B., Saad, M., Luna, C. O., Archambault, P. and Rahman, M., “Sliding Mode Control of an Exoskeleton Robot Based on Time Delay Estimation,” Proceedings of the International Conference on Virtual Rehabilitation (ICVR) (2017) pp. 1–2.
22. Brahmi, B., Saad, M., Ochoa-Luna, C. and Rahman, M. H., “Adaptive Control of an Exoskeleton Robot with Uncertainties on Kinematics and Dynamics,” Proceedings of the International Conference on Rehabilitation Robotics (ICORR) (2017) pp. 1369–1374.
23. Jin, M., Lee, J. and Ahn, K. K., “Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation,” IEEE/ASME Trans. Mechatronics 20 (2), 899909 (2015).
24. Kim, J., Joe, H., Yu, S.-c., Lee, J. S. and Kim, M., “Time-delay controller design for position control of autonomous underwater vehicle under disturbances,” IEEE Trans. Ind. Electron. 63 (2), 10521061 (2016).
25. Karafyllis, I., Malisoff, M., Mazenc, F. and Pepe, P., Recent Results on Nonlinear Delay Control Systems (Springer, New York, NY, 2016).
26. Skjetne, R. and Fossen, T. I., “On Integral Control in Backstepping: Analysis of Different Techniques,” Proceedings of the American Control Conference (2004) pp. 1899–1904.
27. Tan, Y., Chang, J., Tan, H. and Hu, J., “Integral Backstepping Control and Experimental Implementation for Motion System,” Proceedings of the 2000 IEEE International Conference on Control Applications (2000). pp. 367–372.
28. Luo, Y., Liu, Q., Che, X. and Li, L., “Damped least-square method based on chaos anti-control for solving forward displacement of general 6-6-type parallel mechanism,” Int. J. Adv. Robotic Syst. 10 (4), 186 (2013).
29. Liu, C., Song, C., Lu, Q., Liu, Y., Feng, X. and Gao, Y., “Impedance inversion based on L1 norm regularization,” J. Appl. Geophys. 120, 713 (2015).
30. Gauthier, P.-A., Camier, C., Lebel, F.-A., Pasco, Y., Berry, A., Langlois, J., Verron, C. and Guastavino, C., “Experiments of multichannel least-square methods for sound field reproduction inside aircraft mock-up: Objective evaluations,” J. Sound Vib. 376, 194216 (2016).
31. Ferrer, S., Ochoa-Luna, C., Rahman, M., Saad, M. and Archambault, P., “HELIOS: The Human Machine Interface for MARSE Robot,” Proceedings of the 6th International Conference on Human System Interaction (HSI), (IEEE, 2013) (2013) pp. 117–122.
32. Weiss, P. L., Tirosh, E. and Fehlings, D., “Role of virtual reality for cerebral palsy management,” J. Child Neurol. 29 (8), 11191124 (2014).
33. Luna, C. O., Rahman, M. H., Saad, M., Archambault, P. and Zhu, W.-H., “Virtual decomposition control of an exoskeleton robot arm,” Robotica 34 (07), 15871609 (2016).
34. Rahman, M. H., Kittel-Ouimet, T., Saad, M., Kenné, J.-P. and Archambault, P. S., “Dynamic modeling and evaluation of a robotic exoskeleton for upper-limb rehabilitation,” Int. J. Inform. Acquisition 8 (01), 83102 (2011).
35. Craig, J. J., Introduction to Robotics: Mechanics and Control (Pearson Prentice Hall Upper Saddle River, 2005).
36. Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G., Kinematics (Springer, 2009).
37. Spong, M. W., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control (Wiley, New York, 2006).
38. Ochoa Luna, C., Rahman, M. Habibur, Saad, M., Archambault, P. S. and Ferrer, S. Bruce, “Admittance-based upper limb robotic active and active-assistive movements,” Int. J. Adv. Robot. Syst. 12 (9), 117 (2015).
39. Khan, A. M., Yun, D.-w., Ali, M. A., Zuhaib, K. M., Yuan, C., Iqbal, J., Han, J., Shin, K. and Han, C., “Passivity based adaptive control for upper extremity assist exoskeleton,” Int. J. Control Autom. Syst. 14 (1), 291300 (2016).
40. Lawson, C. L. and Hanson, R. J., Solving Least Squares Problems (SIAM, Philadelphia, PA, 1995).
41. Wampler, C. W., “Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods,” IEEE Trans. Syst. Man Cybern. 16 (1), 93101 (1986).
42. Nakamura, Y. and Hanafusa, H., “Inverse kinematic solutions with singularity robustness for robot manipulator control,” ASME, Trans. J. Dyn. Syst. Meas. Control 108, 163171 (1986).
43. Kali, Y., Saad, M., Benjelloun, K. and Benbrahim, M., “Control of Uncertain Robot Manipulators Using Integral Backstepping and Time Delay Estimation,” Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2016) pp. 145–151.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 81 *
Loading metrics...

* Views captured on Cambridge Core between 8th August 2018 - 18th August 2018. This data will be updated every 24 hours.