Skip to main content Accessibility help
×
×
Home

Real-time obstacle avoidance for multiple mobile robots

  • Farbod Fahimi (a1), C. Nataraj (a2) and Hashem Ashrafiuon (a2)
Summary

An efficient, simple, and practical real time path planning method for multiple mobile robots in dynamic environments is introduced. Harmonic potential functions are utilized along with the panel method known in fluid mechanics. First, a complement to the traditional panel method is introduced to generate a more effective harmonic potential field for obstacle avoidance in dynamically changing environments. Second, a group of mobile robots working in an environment containing stationary and moving obstacles is considered. Each robot is assigned to move from its current position to a goal position. The group is not forced to maintain a formation during the motion. Every robot considers the other robots of the group as moving obstacles and hence the physical dimensions of the robots are also taken into account. The path of each robot is planned based on the changing position of the other robots and the position of stationary and moving obstacles. Finally, the effectiveness of the scheme is shown by modeling an arbitrary number of mobile robots and the theory is validated by several computer simulations and hardware experiments.

Copyright
Corresponding author
*Corresponding author. E-mail: ffahimi@ualberta.ca
References
Hide All
1.Canny, J., The Complexity of Robot Motion Planning (The MIT Press, Cambridge, MA, 1987).
2.Zexiang, L. and Canny, J. F., Nonholonomic Motion Planning (Kluwer Academic Publishers, Norwell, MA, 1993).
3.Latombe, J., Robot Motion Planning (Kluwer Academic Publishers, Boston, MA, 1991).
4.Schwartz, J. T. and Sharir, M., “On the piano movers' problem: III. Coordinating the motion of several independent bodies amidst polygon barriers,” Int. J. Robot. Res. 2 (3), 4675 (1983).
5.Hopcrof, J. E., Schwartz, J. T. and Sharir, M., “On the complexity of motion planning for multiple independent objects; pspace-hardness of the warehouseman's problem,” Int. J. Robot. Res. 3 (4), 7688 (1984).
6.LaValle, S. M. and Hutchinson, S. A., “Optimal motion planning for multiple robots having independent goals,” IEEE Trans. Robot. Autom. 14 (6), 912925 (1998).
7.Gulec, N. and Unel, M., “A Novel Algorithm for the Coordination of Multiple Mobile Robots,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3733 NCS, (2005) pp. 422431.
8.van den Berg, J. P. and Overmars, M. H., “Roadmap-based motion planning in dynamic environments,” IEEE Trans. Robot. 21 (5), 885897 (2005).
9.Lee, S. and Adams, T. M., “Spatial model for path planning of multiple mobile construction robots,” Comput.-Aided Civ. Infrastruct. Eng. 19 (4), 231245 (2004).
10.Desai, J. P., Ostrowski, P. J. and Kumar, V., “Modeling and control of formations of nonholonomic mobile robots,” IEEE Trans. Robot. Autom. 6, 905908 (2001).
11.Hirota, K., Kuwabara, T., Kenichi, I., Miyanohara, A., Ohdachi, H., Ohsawa, T., Takeuchi, W., Yubazaki, N. and Ohtani, M., “Robots Moving in Formation by IEEE International Conference on Fuzzy Systems, vol. 1, Yokohama, Japan Using Neural Network and Radial Basis Functions,” Proceedings of the (1995) pp. 91–94.
12.Jing, X.-J. and Wang, Y.-C., “Control of Behavior Dynamics for Motion Planning of Mobile Robots in Uncertain Environments,” Proceedings of the 2005 IEEE International Conference on Mechatronics, ICM '05, vol. 2005, Taipei, Taiwan (2005) pp. 364–369.
13.Liang, Y. and Lee, H.-H., “Avoidance of Multiple Obstacles for a Mobile Robot with Nonholonomic Constraints,” American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, vol. 74 DSC, no. 2 PART B, Orlando, FL, United States (2005) pp. 1657–1663.
14.Lawton, R. J., Young, B. J. and Beard, R. W., “A Decentralized Approach to Elementary Formation Maneuvers,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, San Francisco, CA, USA (2000) pp. 27282743.
15.Yamaguchi, H., “Cooperative hunting behavior by mobile robot troops,” Int. J. Robot. Res. 9, 931940 (1999).
16.Shao, J., Xie, G., Yu, J. and Wang, L., “Leader-Following Formation Control of Multiple Mobile Robots,” Proceedings of the 20th IEEE International Symposium on Intelligent Control, ISIC '05 and the 13th Mediterranean Conference on Control and Automation, MED '05, vol. 2005, (Limassol, Cyprus), pp. 808–813, 2005.
17.Balch, T. and Arkin, R. C., “Behavior-based formation control for multi-robot teams,” IEEE Trans. Robot. Autom. 6, 926939 (1998).
18.Cao, Z., Xie, L., Zhang, B., Wang, S. and Tan, M., “Formation Constrained Multi-robot System in Unknown Environments,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, Taipei, Taiwan (2003) pp. 735–740.
19.Marchese, F. M. and Negro, M. D., “Path-Planning for Multiple Generic-Shaped Mobile Robots with MCA,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3993 NCS–III, (2006) pp. 264–271.
20.Warren, C., “Multiple Robot Path Coordination Using Artificial Potential Fields,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, Cincinnati, OH, USA (1990) pp. 500505.
21.Sheu, C. and Young, K., “Heuristic approach to robot path planning based on task requirements using a genetic algorithm,” J. Intell. Robot. Syst.: Theory and Appl. 1, 6588 (1996).
22.Yun, X. and Tan, K., “Wall-Following Method for Escaping Local Minima in Potential Field Based Motion Planning,” Proceeding of the 8th International Conference on Advanced Robotics, ICAR'97, Monterey, CA, USA (1997) pp. 421426.
23.Cosio, F. A. and Castaneda, M. P., “Autonomous robot navigation using adaptive potential fields,” Math. Comput. Modelling 40 (9–10), 11411156 (2004).
24.Ge, S. S. and Cui, Y. J., “Dynamic motion planning for mobile robot using potential field method,” Auton. Robot. 1, 207222 (2002).
25.Kim, D. H., Wang, H. O., Ye, G. and Shin, S., “Decentralized Control of Autonomous Swarm Systems Using Artificial Potential Functions: Analytical Design Guidelines,” Proceedings of the IEEE Conference on Decision and Control, vol. 1, Nassau, Bahamas (2004) pp. 159–164.
26.Chester, C. R., Techniques in Partial Differential Equations (McGraw-Hill, New York, 1971).
27.Kim, J. and Khosla, P. K., “Real-time obstacle avoidance using harmonic potential functions,” IEEE Trans. Robot. Autom. 3, 338349 (1992).
28.Connolly, C. I., Burnd, J. B. and Weiss, R., “Path Planning Using Laplace's Equation,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA (1990) pp. 2102–2106.
29.Guldner, J., Utkin, V. I. and Bauer, R., “A three-layered hierarchical path control system for mobile robots: Algorithms and experiments,” Robot. Autom. Syst. 14, 133147 (1995).
30.Arai, T. and Ota, J., “Motion planning of multiple mobile robots using virtual impedance,” J. Robot. Mechatronics 8 (1), 6774 (1996).
31.Akishita, S., Kawamura, S., and Hisanobu, T., “Velocity potential approach to path planning for avoiding moving obstacles,” Adv. Robot. 7 (5), 463478 (1996).
32.Sugiyama, S. and Akishita, S., “Path Planning for Mobile Robot at Crossroads by Using Hydrodynamic Potential,” Proceedings of 1998 Japan–USA Symposium on Flexible Automation, Ohstu, Japan (1998) pp. 595–602.
33.Kuethe, A. M. and Chow, C. Y., Foundation of Aerodynamics: Bases of Aerodynamic Design, 4th ed. (Wiley, New York, 1986).
34.Fahimi, F., Ashrafiuon, H. and Nataraj, C., “Obstacle avoidance for spatial hyper-redundant manipulators using harmonic potential functions and the mode shape technique,” J. Robot. Syst. 20 (1), 2333 (2003).
35.Zhang, Y. and Valavanis, K. P., “Sensor-based 2-D potential panel method for robot motion planning,” Robotica 1, 8189 (1996).
36.Zhang, Y. and Valavanis, K. P., “A 3-D panel method for robot motion planning,” Robotica 1, 421434 (1997).
37.Luca, A. D., Oriolo, G. and Samson, C., Feedback Control of a Nonholonomic Car-Like Robot, Robot Motion Planning and Control (Springer-Verlag, Berlin, Germany, 1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed