Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T15:18:37.166Z Has data issue: false hasContentIssue false

Research and experiment on active training of lower limb based on five-bar mechanism of man-machine integration system

Published online by Cambridge University Press:  14 March 2024

Jianghong Sun*
Affiliation:
School of Mechanical Electrical Engineering, Beijing Information Science & Technology University, Beijing, PR China Institute of Mechatronic Engineering, Tsinghua University, Beijing, PR China
Fuqing Hu
Affiliation:
School of Mechanical Electrical Engineering, Beijing Information Science & Technology University, Beijing, PR China
Keke Gao
Affiliation:
School of Mechanical Electrical Engineering, Beijing Information Science & Technology University, Beijing, PR China
Feng Gao
Affiliation:
School of Mechanical Electrical Engineering, Beijing Information Science & Technology University, Beijing, PR China
Chao Ma
Affiliation:
Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing, PR China
Junjian Wang
Affiliation:
China National Machine Tool Quality Supervision Testing Center, Beijing, PR China
*
Corresponding author: Jianghong Sun; Email: 19960207@bistu.edu.cn

Abstract

In view of the fact that the current research on active and passive rehabilitation training of lower limbs is mainly based on the analysis of exoskeleton prototype and the lack of analysis of the actual movement law of limbs, the human-machine coupling dynamic characteristics for active rehabilitation training of lower limbs are studied. In this paper, the forward and inverse kinematics are solved on the basis of innovatively integrating the lower limb and rehabilitation prototype into a human-machine integration system and equivalent to a five-bar mechanism. According to the constraint relationship of hip joint, knee joint and ankle joint, the Lagrange dynamic equation and simulation model of five-bar mechanism under the constraint of human physiological joint motion are constructed, and the simulation problem of closed-loop five-bar mechanism is solved. The joint angle experimental system was built to carry out rehabilitation training experiments to analyze the relationship between lower limb error and height, weight and BMI, and then, a personalized training planning method suitable for people with different lower limb sizes was proposed. The reliability of the method is proved by experiments. Therefore, we can obtain the law of limb movement on the basis of traditional rehabilitation training, appropriately reduce the training speed or reduce the man-machine position distance and reduce the training speed or increase the man-machine distance to reduce the error to obtain the range of motion angle closer to the theory of hip joint and knee joint respectively, so as to achieve better rehabilitation.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trinnachoke, E., Viboon, S., “A Lower limb rehabilitation robot in sitting position with a review of training activities,” J Healthc Eng 2018, 1927807 (2018).Google Scholar
China Disabled Persons’ Federation, Statistical bulletin on the development of disabled persons in 2019, (2020).Google Scholar
Wang, L.D., Peng, B. and Zhang, H. Q., “Summary of ”China stroke prevention and treatment report 2020,” Chinese J Cereb Dis 19(02), 136144 (2022).Google Scholar
Bhardwaj, S., Khan, A. A. and Muzammil, M., “Lower limb rehabilitation robotics: The current understanding and technology,” Work 69(3), 100109 (2021).CrossRefGoogle ScholarPubMed
Pang, C.C., Li, R. L. and Feng, Y. P., “Research progress on the application of rehabilitation robots in stroke hemiplegia rehabilitation,” Nurs Res 33(21), 37153719 (2019).Google Scholar
Liu, X., Yang, M. and Yang, M. L., “Application of multi-position intelligent lower limb rehabilitation robot in rehabilitation training of stroke patients,” Biomed Eng Clin 22(03), 299303 (2018).Google Scholar
Guo, B., Han, J., Li, X., Fang, T. and You, A., “Research and design of a new horizontal lower limb rehabilitation training robot,” Int J Adv Robot Syst 13(1), 10 (2016).10.5772/62032CrossRefGoogle Scholar
Carpinella, I., Lencioni, T., Bowman, T., Bertoni, R., Turolla, A., Ferrarin, M. and Jonsdottir, J., “Effects of robot therapy on upper body kinematics and arm function in person post-stroke: A pilot randomized controlled trial,” J NeuroEng Rehabil 17(1), 10 (2020).CrossRefGoogle Scholar
Zhao, J., Zhou, X. and Yang, X. N., “Research of wire-driven parallel lower limb rehabilitation robot,” J Phys: Conf Series 2229(1), 2843 (2022).Google Scholar
Cheng, H., Huang, R. and Qiu, J., “A review of rehabilitation robots and their clinical applications,” Robotics 43(05), 606619 (2021).Google Scholar
Fang, Q. Q., Xu, T. and Zheng, T. J., “A rehabilitation training interactive method for lower limb exoskeleton robot,” Math Prob Eng 1, 1025 (2022).Google Scholar
Langley, B., Jones, A., Board, T. and Greig, M., “Modified conventional gait model vs. Six degrees of freedom model: A comparison of lower limb kinematics and associated error,” Gait Post 89, 16 (2021).10.1016/j.gaitpost.2021.06.016CrossRefGoogle Scholar
Jakob, I., Kollreider, A., Germanotta, M., Benetti, F., Cruciani, A., Padua, L. and Aprile, I., “Robotic and sensor technology for upper limb rehabilitation,” PM&R 10(4), 189197 (2018).Google ScholarPubMed
Mohamed, A., Jyotindra, N. and Dwivedy, K., “Event-triggered adaptive control for upper-limb robot-assisted passive rehabilitation exercises with input delay,” Proceed Inst Mech Eng 236(4), 832845 (2022).Google Scholar
Wang, H., Lin, M., Jin, Z., Yan, H., Liu, G., Liu, S. and Hu, X., “A 4-DOF workspace lower limb rehabilitation robot: Mechanism design, human joint analysis and trajectory planning,” Appl sci 10(13), 45424560 (2020).10.3390/app10134542CrossRefGoogle Scholar
Li, W. D., Li, J. and Li, X., “Dynamics analysis and parameter optimization of underactuated heterogeneous lower limb rehabilitation robots,” J Zhejiang Univ (Eng Sci) 55(02), 222228 (2021).Google Scholar
Ma, J. T., IMU-based inverse dynamics modeling and power-assisted simulation of lower limb walking (Harbin Institute of Technology, Harbin, 2019).Google Scholar
Gao, M., Wang, Z., Pang, Z., Sun, J., Li, J., Li, S. and Zhang, H., “Electrically driven lower limb exoskeleton rehabilitation robot based on anthropomorphic design,” Machines 10(4), 266293 (2022).CrossRefGoogle Scholar
Guatibonza, A., Solaque, L. and Velasco, A., “Parallel assistive robotic system for knee rehabilitation: Kinematic and dynamic modeling validation,” J Med Eng Technol 46(8), 637647 (2022).CrossRefGoogle ScholarPubMed
Wang, X., Feng, Y., Zhang, J., Li, Y., Niu, J., Yang, Y. and Wang, H., “Design and analysis of a lower limb rehabilitation training component for bedridden stroke patients,” Machines 9(10), 224239 (2021).CrossRefGoogle Scholar
Shao, Z. W., Li, J. and Yu, L. T., “A method for self-service rehabilitation training of human lower limbs,” (2022), arXiv preprint arXiv:2205.08853.Google Scholar
Ma, H., “Research on Promotion of Lower Limb Movement Function Recovery after Stroke by Using Lower Limb Rehabilitation Robot in Combination with Constant Velocity Muscle Strength Training,” In: 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), Zhuhai, China (2021) pp. 7073.Google Scholar
Quaglia, D., Gasperi, M., Coser, R., Grisenti, G., Scartozzi, M., Girardi, E. and Mazzini, N., “Robotic rehabilitation effect on upper limb recovery in post-acute stroke,” Gait Post 66(1), 3132 (2018).CrossRefGoogle Scholar
Comfort, P., Jones, P. A., Smith, L. C. and Herrington, L., “Joint kinetics and kinematics during common lower limb rehabilitation exercises,” J Athl Training 50(10), 10111018 (2015).CrossRefGoogle ScholarPubMed
Khor, K. X., Rahman, H. A., Fu, S. K., Sim, L. S., Yeong, C. F. and Su, E. L. M., “A novel hybrid rehabilitation robot for upper and lower limb rehabilitation training,” Procedia Comput Sci 42(1), 293300 (2014).CrossRefGoogle Scholar
Pianta, L., Bigoni, M., Cimolin, V., Cau, N., Baudo, S. and Mauro, A., “Does kinematics add meaningful information to clinical assessment in upper limb rehabilitation after stroke,” Gait Post 42, 2021 (2015).CrossRefGoogle Scholar
Bai, J.. Research On Key Technologies and Rehabilitation Evaluation of Upper Limb Rehabilitation Robot (Southeast University, Nanjing, (2019).Google Scholar
Shang, H. C., Ji, T. and Fu, X. L., “Structural design and dynamic analysis of lower limb rehabilitation robot,” Mech Des Manufac 375(5), 253256 (2022).Google Scholar
Yan, S. Y., Xu, Y. Q. and Chen, Y.. Ergonomics and Product Design (Harbin Institute of Technology Press, Harbin, 2017). 2029.Google Scholar
Meng, L., Macleod, C. A., Porr, B. and Gollee, H., “Bipedal robotic walking control derived from analysis of human locomotion,” Biol Cybern 112(3), 277290 (2018).CrossRefGoogle ScholarPubMed
Tan, M. M. and Y. K., Jia, “Kinematics analysis and simulation of hip rehabilitation robot,” Comp Eng Appl 7, 19 (2022).Google Scholar
Xia, T., Huan, Q. and Chen, Y., “Design and kinematics analysis of lower limb exoskeleton rehabilitation robot,” J Huaqiao Univ (Nat Sci Edn) 38(04), 452456 (2017).Google Scholar
Shao, E., Lu, Z., Cen, X., Zheng, Z., Sun, D. and Gu, Y., “The effect of fatigue on lower limb joint stiffness at different walking speeds,” Diagnostics 12(6), 14701482 (2022).CrossRefGoogle ScholarPubMed
Bicer, M., Phillips, A. T. M. and Modenese, L., “Altering the strength of the muscles crossing the lower limb joints only affects knee joint reaction forces,” Gait Post 95, 210216 (2022).10.1016/j.gaitpost.2022.03.020CrossRefGoogle ScholarPubMed
Li, M., Xue, Q., Yang, S., Han, X. and Zhang, S., “Effects analysis of handrail height on sit-to-stand movement under knee joint support in healthy young adults,” Res Biomed Engi 38(2), 617628 (2022).CrossRefGoogle Scholar
Ataabadi, P. A., Sarvestan, J. and Alaei, F., “Linear and non-linear analysis of lower limb joints angle variability during running at different speeds,” Acta Gymnica 51, 2331 (2021).Google Scholar
Khuyagbaatar, B., Purevsuren, T. and Ganbat, D., “Normal range of motion of lower extremity joints in Mongolian subjects,” Engineering Proceedings 11(1), 2929 (2021).Google Scholar