Skip to main content Accessibility help

Robotic hand posture and compliant grasping control using operational space and integral sliding mode control

  • Guido Herrmann (a1), Jamaludin Jalani (a2), Muhammad Nasiruddin Mahyuddin (a3), Said G Khan (a4) and Chris Melhuish (a5)...

This paper establishes a novel approach of robotic hand posture and grasping control. For this purpose, the control uses the operational space approach. This permits the consideration of the shape of the object to be grasped. Thus, the control is split into a task control and a particular optimizing posture control. The task controller employs Cylindrical and Spherical coordinate systems due to their simplicity and geometric suitability. This is achieved by using an integral sliding mode controller (ISMC) as task controller. The ISMC allows us to introduce a model reference approach where a virtual mass-spring-damper system can be used to design a compliant trajectory tracking controller. The optimizing posture controller together with the task controller creates a simple approach to obtain pre-grasping/object approach hand postures. The experimental results show that target trajectories can be easily followed by the task control despite the presence of friction and stiction. When the object is grasped, the compliant control will automatically adjust to a specific compliance level due to an augmented compliance parameter adjustment algorithm. Once a specific compliance model has been achieved, the fixed compliance controller can be tested for a specific object grasp scenario. The experimental results prove that the Bristol Elumotion robot hand (BERUL) can automatically and successfully attain different compliance levels for a particular object via the ISMC.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Jacobsen, S., Wood, J., Knutti, D. and Biggers, K., “The utah/m.i.t. dextrous hand: Work in progress,” Int. J. Robot. Res. 3 (4), 2150 (1984).
2. Shadow Robot Company, “Design of a Dextrous Hand for Advanced CLAWAR Applications,” Proceedings of CLAWAR (2003) pp. 691–698.
3. Grebenstein, M., Albu-Schaffer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., Gruber, R., Haddadin, S., Hagn, U., Haslinger, R., Hoppner, H., Jorg, S., Nickl, M., Nothhelfer, A., Petit, F., Reill, J., Seitz, N., Wimbock, T., Wolf, S., Wusthoff, T. and Hirzinger, G., “The DLR Hand Arm System,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (May 2011) pp. 3175–3182.
4. Borst, C., Fischer, M., Haidacher, S., Liu, H. and Hirzinger, G., “DLR Hand II: Experiments and Experience with an Anthropomorphic Hand,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA '03, Vol. 1 (Sep. 2003) pp. 702–707.
5. Griffin, W. B., Findley, R. P., Turner, M. L. and Cutkosky, M. R., “Calibration and Mapping of a Human Hand for Dexterous Telemanipulation,” Proceedings of the ASME IMECE 2000 Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems (2000) pp. 1–8.
6. Akin, D., Carignan, C. and Foster, A., “Development of a Four-Fingered Dexterous Robot end Effector for Space Operations,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3 (2002) pp. 2302–2308.
7. Geng, T., Lee, M. and Hlse, M., “Transferring Human Grasping Synergies to a Robot,” Mechatronics, 21 (1), 272284 (2011).
8. Wang, H., Low, K. H., Wang, M. Y. and Gong, F., “A Mapping Method for Telemanipulation of the non-Anthropomorphic Robotic Hands with Initial Experimental Validation,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2005, IEEE (2005) pp. 4218–4223.
9. Gioioso, G., Salvietti, G., Malvezzi, M. and Prattichizzo, D., “Mapping Synergies from Human to Robotic Hands with Dissimilar Kinematics: An Approach in the Object Domain,” IEEE Trans. Robot. 29 (4), 825837 (2013).
10. Bae, S. C., “Investigation of Hand Posture During Reach and Grasp for Ergonomic Applications,” Ph.D. Thesis (Ann Arbor, Michigan: University of Michigan, 2011).
11. Jalani, J., Mahyuddin, N., Herrmann, G. and Melhuish, C., “Active Robot hand Compliance using Operational Space and Integral Sliding Mode Control,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (2013) pp. 1749–1754.
12. Jalani, J., Herrmann, G. and Melhuish, C., “Robust Active Compliance Control for Practical Grasping of a Cylindrical Object via a Multifingered Robot Hand,” Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics (RAM) (2011) pp. 316–321.
13. DeSapio, V., Warren, J., Khatib, O. and Delp, S., “Simulating the task-level control of human motion: a methodology and framework for implementation.” Vis. Comput. 21 (5) 289302 (2005).
14. Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G., Robotics: Modelling, Planning and Control (Springer, London, 2009).
15. Ham, R., Sugar, T., Vanderborght, B., Hollander, K. and Lefeber, D., “Compliant actuator designs,” IEEE Robot. Autom. Mag. 16 (3), 8194 (Sep. 2009).
16. Cutkosky, M. R., Robotic Grasping and Fine Manipulation (Kluwer Academic Publishers, Norwell, MA, USA, 1985).
17. Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).
18. Shimoga, K. and Goldenberg, A., “Soft robotic fingertips,” Int. J. Robot. Res. 15 (4), 320334 (1996).
19. Biagiotti, L., Melchiorri, C., Tiezzi, P. and Vassura, G., “Modelling and Identification of Soft Pads for Robotic Hands,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2005) pp. 2786–2791.
20. Lionel Birglen, T. L. and Gosselin, C., Underactuated Robotics Hand (Springer-Verlag, Berlin, Heidelberg, 2008).
21. BenAmor, H., Saxena, A., Hudson, N. and Peters, J., “Special issue on autonomous grasping and manipulation,” Auton. Robots 36 (1–2), 13 (2014).
22. Liu, H. and Hirzinger, G., “Cartesian Impedance Control for the DLR Hand,” Proceedings of the Intelligent Robots and Systems, IROS'99, Vol. 1 (1999) pp. 106 –112.
23. Ott, C., Albu-Schaffer, A., Kugi, A. and Hirzinger, G., “On the passivity-based impedance control of flexible joint robots,” IEEE Trans. Robot. 24 (2), 416429 (2008).
24. Albu-Schaffer, A., Ott, C. and Hirzinger, G., “A unified passivity-based control framework for position, torque and impedance control of flexible joint robots,” Int. J. Robot. Res. 26 (1), 2339 (2007).
25. Khan, S., Herrmann, G., Pipe, A. and Melhuish, C., “Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control,” Int. J. Soc. Robot. 2 (3), 305319 (2010).
26. Chen, Z., Lii, N., Wimboeck, T., Fan, S., Jin, M., Borst, C. and Liu, H., “Experimental Study on Impedance Control for the Five-Finger Dexterous Robot Hand DLR-HIT II,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010) pp. 5867–5874.
27. Mouri, K., Terashima, K., Minyong, P., Kitagawa, H. and Miyoshi, T., “Identification and Hybrid Impedance Control of Human Skin Muscle by Multi-Fingered Robot Hand,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS) (2007) pp. 2895–2900.
28. Xu, Y. and Paul, R., “On Position Compensation and Force Control Stability of a Robot with a Compliant Wrist,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2 (Apr. 1988) pp. 1173–1178.
29. Jaura, A., Osman, M. and Krouglicof, N., “Hybrid Compliance Control for Intelligent Sssembly in a Robot Work Cell,” Int. J. Prod. Res. 36 (9), 25732583 (1998).
30. Kim, B.-H., Oh, S.-R., Suh, I. and Yi, G.-J., “A compliance control strategy for robot manipulators under unknown environment,” KSME Int. J. 14, 10811088 (2000).
31. Khan, S., Herrmann, G., Pipe, T. and Melhuish, C., “Adaptive Multi-Dimensional Compliance Control of a Humanoid Robotic Arm with Anti-Windup Compensation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010) pp. 2218–2223.
32. Haddadin, S., Huber, F., Krieger, K., Weitschat, R., Albu-Schaffer, A., Wolf, S., Friedl, W., Grebenstein, M., Petit, F., Reinecke, J. and Lampariello, R., “Intrinsically Elastic Robots: The Key to Human like Performance,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012) pp. 4270–4271.
33. Ott, C., Henze, B. and Lee, D., “Kinesthetic Teaching of Humanoid Motion based on Whole-Body Compliance Control with Interaction-Aware Balancing,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013) pp. 4615–4621.
34. Sadeghian, H., Keshmiri, M., Villani, L. and Siciliano, B., “Null-Space Impedance Control with Disturbance Observer,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012) pp. 2795–2800.
35. Zhang, T., Jiang, L., Fan, S., Wu, X. and Feng, W., “Development and experimental evaluation of multi-fingered robot hand with adaptive impedance control for unknown environment grasping,” Robotica (FirstView) 10, 118 (2014).
36. Zhang, T., Jiang, L., Wu, X., Feng, W., Zhou, D. and Liu, H., “Fingertip three-axis tactile sensor for multifingered grasping,” IEEE/ASME Trans. Mechatronics PP (99), 111 (2014).
37. Zhang, T., Liu, H., Jiang, L., Fan, S. and Yang, J., “Development of a flexible 3-d tactile sensor system for anthropomorphic artificial hand,” IEEE Sensors J., 13 (2), 510518 (2013).
38. Shi, J., Liu, H. and Bajcinca, N., “Robust control of robotic manipulators based on integral sliding mode,” Int. J. Control 81, 15371548 (2008).
39. Jalani, J., Herrmann, G. and Melhuish, C., “Underactuated fingers controlled by robust and adaptive trajectory following methods,” Int. J. Syst. Sci. 45 (2), 120132 (2014), DOI: 10.1080/00207721.2012.687866.
40. Spiers, A., Herrmann, G. and Melhuish, C., “An Optimal Sliding Mode Controller Applied to Human Motion Synthesis with Robotic Implementation,” American Control Conference (ACC) (Jun. 30–Jul. 2 2010) pp. 991–996.
41. Jalani, J., Herrmann, G. and Melhuish, C., “Robust Trajectory Following for Underactuated Robot Fingers,” Proceedings of the UKACC International Conference on CONTROL (Sep. 2010) pp. 495–500.
42. Khatib, O., “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. Robot. Autom. 3 (1), 4353 (1987).
43. Khatib, O., “Inertial properties in robotic manipulation: An object-level framework,” Int. J. Robot. Res., 14 (1), 1936 (1995).
44. Yokoyama, M., Kim, G.-N. and Tsuchiya, M., “Integral sliding mode control with anti-windup compensation and its application to a power assist system,” J. Vib. Control 16 (4), 503512 (2010).
45. Defoort, M., Floquet, T., Kokosy, A. and Perruquetti, W., “Integral sliding mode control for trajectory tracking of a unicycle type mobile robot,” Integr. Comput.-Aided Eng. 13 (3), 277288 (2006).
46. Eker, I. and Akinal, S., “Sliding mode control with integral augmented sliding surface: Design and experimental application to an electromechanical system,” Electr. Eng., 90 (3), 189197 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed