Skip to main content
×
×
Home

Robotic tails: a state-of-the-art review

  • Wael Saab (a1), William S. Rone (a1) and Pinhas Ben-Tzvi (a1)
Summary

This paper reviews the state-of-the-art in robotic tails intended for inertial adjustment applications on-board mobile robots. Inspired by biological tails observed in nature, robotic tails provide a separate means to enhance stabilization, and maneuverability from the mobile robot's main form of locomotion, such as legs or wheels. Research over the past decade has primarily focused on implementing single-body rigid pendulum-like tail mechanisms to demonstrate inertial adjustment capabilities on-board walking, jumping and wheeled mobile robots. Recently, there have been increased efforts aimed at leveraging the benefits of both articulated and continuum tail mechanism designs to enhance inertial adjustment capabilities and further emulate the structure and functionalities of tail usage found in nature. This paper discusses relevant research in design, modeling, analysis and implementation of robotic tails onto mobile robots, and highlight how this work is being used to build robotic systems with enhanced performance capabilities. The goal of this article is to outline progress and identify key challenges that lay ahead.

Copyright
Corresponding author
*Corresponding author. E-mail: bentzvi@vt.edu
References
Hide All
1. Hickman, G. C., “The mammalian tail: A review of functions,” Mammal Rev. 9 (4), 143157 (1979).
2. Howell, A. B., “Speed in animals, their specialization for running and leaping,” Am. J. Phys. Anthropology 3 (1), 109110 (1944).
3. Benton, M. J., “Studying function and behavior in the fossil record,” PLoS Biol. 8 (3), e1000321 (2010).
4. Proske, U., “Energy conservation by elastic storage in kangaroos,” Endeavour 4(4), 148–153 (1980).
5. Santiago, J. L. C., Godage, I. S., Gonthina, P. and Walker, I. D., “Soft robots and kangaroo tails: Modulating compliance in continuum structures through mechanical layer jamming,” Soft Robot. 3 (2), 5463 (2016).
6. Johnson, A. M., Libby, T., Chang-Siu, E., Tomizuka, M., Full, R. J. and Koditschek, D. E., “Tail assisted dynamic self righting,” World Sci. 611620 (2012).
7. Libby, T., Moore, T. Y., Chang-Siu, E., Li, D., Cohen, D. J., Jusufi, A. and Full, R. J., “Tail-assisted pitch control in lizards, robots and dinosaurs,” Nature 481(7380), 181184 (2012).
8. Greene, H. W., Burghardt, G. M., Dugan, B. A. and Rand, A. S., “Predation and the defensive behavior of green iguanas (Reptilia, Lacertilia, Iguanidae),” J. Herpetology 12 (2), 169176 (1978).
9. Hedrick, T. L. and Biewener, A., “Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). I. Kinematic and neuromuscular control of turning,” J. Exp. Biol. 210 (11), 18971911 (2007).
10. Kane, T. and Scher, M., “A dynamical explanation of the falling cat phenomenon,” Int. J. Solids Struct. 5 (7), 663IN16671666IN2670 (1969).
11. Pijnappels, M., Kingma, I., Wezenberg, D., Reurink, G. and van Dieën, J. H., “Armed against falls: The contribution of arm movements to balance recovery after tripping,” Exp. Brain Res. 201 (4), 689699 (2010).
12. Crawford, L. S. and Sastry, S. S., “Biological Motor Control Approaches for a Planar Diver,” Conference on Decision and Control (1995) pp. 3881–3886.
13. Lim, H.-o., Kaneshima, Y. and Takanishi, A., “Online Walking Pattern Generation for Biped Humanoid Robot with Trunk,” IEEE International Conference on Robotics and Automation (2002) pp. 3111–3116.
14. Harada, K., Kajita, S., Kaneko, K. and Hirukawa, H., “Zmp Analysis for Arm/Leg Coordination,” International Conference on Intelligent Robots and Systems (2003) pp. 75–81.
15. Papadopoulos, E. and Rey, D. A., “A New Measure of Tipover Stability Margin for Mobile Manipulators,” IEEE International Conference on Robotics and Automation (1996) pp. 3111–3116.
16. Gupta, S. K., Bejgerowski, W., Gerdes, J., Hopkins, J., Lee, L., Narayanan, M. S., Mendel, F. and Krovi, V., An Engineering Approach to Utilizing Bio-Inspiration in Robotics Applications, Biologically Inspired Design (Springer, London, 2014) pp. 245267.
17. Wertz, J. R., Spacecraft Attitude Determination and Control, (Springer Science & Business Media, Springer, Netherlands, 2012).
18. Oates, G. C., Aircraft Propulsion Systems Technology and Design (Aiaa, Portland, OR, 1989).
19. Lee, S.-H. and Goswami, A., “Reaction Mass Pendulum (RMP): An Explicit Model for Centroidal Angular Momentum of Humanoid Robots,” IEEE International Conference on Robotics and Automation (2007) pp. 4667–4672.
20. Carpenter, M. D. and Peck, M. A., “Reducing base reactions with gyroscopic actuation of space-robotic systems,” IEEE Trans. Robot. 25 (6), 12621270 (2009).
21. Machairas, K. and Papadopoulos, E., “On Quadruped Attitude Dynamics and Control Using Reaction Wheels and Tails,” European Control Conference (2015) pp. 753758.
22. Briggs, R., Lee, J., Haberland, M. and Kim, S., “Tails in Biomimetic Design: Analysis, Simulation, and Experiment,” International Conference on Intelligent Robots and Systems (2012) pp. 1473–1480.
23. Patel, A. and Boje, E., “On the conical motion of a two-degree-of-freedom tail inspired by the cheetah,” IEEE Trans. Robot. 31 (6), 15551560 (2015).
24. Patel, A. and Braae, M., “Rapid Turning at High-Speed: Inspirations from the Cheetah's Tail,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2013) pp. 5506–5511.
25. Jusufi, A., Kawano, D., Libby, T. and Full, R., “Righting and turning in mid-air using appendage inertia: Reptile tails, analytical models and bio-inspired robots,” Bioinspiration and Biomimetics 5 (4), 045001 (2010).
26. Liu, G.-H., Lin, H.-Y., Lin, H.-Y., Chen, S.-T. and Lin, P.-C., “A bio-inspired hopping kangaroo robot with an active tail,” J. Bionic Eng. 11 (4), 541555 (2014).
27. De, A. and Koditschek, D. E., “The penn jerboa: A platform for exploring parallel composition of templates,” preprint arXiv:1502.05347, (2015).
28. Zeglin, G. J., Uniroo–A One Legged Dynamic Hopping Robot, (Massachusetts Institute of Technology, Cambridge, MA, 1991).
29. Marchese, A. D., Onal, C. D. and Rus, D., “Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators,” Soft Robot. 1 (1), 7587 (2014).
30. Liu, J. and Hu, H., “Biological inspiration: From carangiform fish to multi-joint robotic fish,” J. Bionic Eng. 7 (1), 3548 (2010).
31. Chang-Siu, E., Libby, T., Tomizuka, M. and Full, R. J., “A Lizard-Inspired Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terrestrial Robot,” International Conference on Intelligent Robots and Systems (2011) pp. 1887–1894.
32. Chang-Siu, E., Libby, T., Brown, M., Full, R. J. and Tomizuka, M., “A Nonlinear Feedback Controller for Aerial Self-Righting by a Tailed Robot,” International Conference on Robotics and Automation (2013) pp. 32–39.
33. Takita, K., Katayama, T. and Hirose, S., “The Efficacy of the Neck and Tail of Miniature Dinosaur-like Robot TITRUS-III,” International Conference on Intelligent Robots and Systems (2002) pp. 2593–2598.
34. Zhao, J., Zhao, T., Xi, N., Cintrón, F. J., Mutka, M. W. and Xiao, L., “Controlling Aerial Maneuvering of a Miniature Jumping Robot using its Tail,” International Conference on Intelligent Robots and Systems (2013) pp. 38023807.
35. Haynes, G. C., Pusey, J., Knopf, R., Johnson, A. M. and Koditschek, D. E., “Laboratory on Legs: An Architecture for Adjustable Morphology with Legged Robots,” SPIE Defense, Security, and Sensing (2012) pp. 83870W-83870W–83814.
36. Zhao, J., Zhao, T., Xi, N., Mutka, M. W. and Xiao, L., “MSU tailbot: Controlling aerial maneuver of a miniature-tailed jumping robot,” IEEE/ASME Trans. Mechatronics 20 (6), 29032914 (2015).
37. Patel, A. and Braae, M., “Rapid Acceleration and Braking: Inspirations from the Cheetah's Tail,” IEEE International Conference on Robotics and Automation (2014) pp. 793–799.
38. Galloway, K. C., Haynes, G. C., Ilhan, B. D., Johnson, A. M., Knopf, R., Lynch, G. A., Plotnick, B. N., White, M. and Koditschek, D. E., “X-RHex: A highly mobile hexapedal robot for sensorimotor tasks,” (2010).
39. Kohut, N., Haldane, D., Zarrouk, D. and Fearing, R., “Effect of Inertial Tail on Yaw Rate of 45 Gram Legged Robot,” International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machinces (2012) pp. 157–164.
40. Kohut, N. J., Pullin, A. O., Haldane, D. W., Zarrouk, D. and Fearing, R. S., “Precise Dynamic Turning of a 10 cm Legged Robot on a Low Friction Surface using a Tail,” IEEE International Conference on Robotics and Automation (2013) pp. 3299–3306.
41. Berenguer, F. J. and Monasterio-Huelin, F. M., “Zappa, a quasi-passive biped walking robot with a tail: Modeling, behavior, and kinematic estimation using accelerometers,” IEEE Trans. Indus. Electr. 55 (9), 32813289 (2008).
42. Rone, W., Saab, W. and Ben-Tzvi, P., “Design, Modeling and Optimization of the Universal-Spatial Robotic Tail,” International Mechanical Engineering Congress and Exposition (2017) p. V04AT05A020.
43. Saab, W., Rone, W. and Ben-Tzvi, P., “Discrete modular serpentine robotic tail: Design, analysis and experimentation,” Robotica 125 (2018). doi: 10.1017/S0263574718000176
44. Saab, W., Rone, W., Kumar, A. and Ben-Tzvi, P., “Design and integration of a novel spatial articulated robotic tail,” IEEE/ASME Trans. Mechatronics (2018).
45. Rone, W., Saab, W., Ben-Tzvi, P., “Design, Modeling and Integration of a Flexible Universal Spatial Robotic Tail”, Journal of Mechanisms and Robotics, Transactions of the ASME, 10 (4), pp. 041001: 114, August 2018.
46. Saab, W. and Ben-Tzvi, P., “Design and Analysis of a Discrete Modular Serpentine Robotic Tail for Improved Performance of Mobile Robots,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2016) p. V05AT07A061.
47. Zhao, J., Xu, J., Gao, B., Xi, N., Cintrón, F. J., Mutka, M. W. and Xiao, L., “MSU jumper: A single-motor-actuated miniature steerable jumping robot,” IEEE Trans. Robot. 29 (3), 602614 (2013).
48. Zeglin, G. J., Uniroo–A One Legged Dynamic Hopping Robot (Massachusetts Institute of Technology, 1991).
49. Libby, T., Johnson, A. M., Chang-Siu, E., Full, R. J. and Koditschek, D. E., “Comparative design, scaling, and control of appendages for inertial reorientation,” IEEE Trans. Robot. 32 (6), 13801398 (2016).
50. Zhao, J., Zhao, T., Xi, N., Cintrón, F. J., Mutka, M. W. and Xiao, L., “Controlling Aerial Maneuvering of a Miniature Jumping Robot Using Its Tail,” International Conference on Intelligent Robots and Systems (2013) pp. 3802–3807.
51. Saab, W. and Ben-Tzvi, P., “Maneuverability and Heading Control of a Quadruped Robot Utilizing Tail Dynamics,” Dynamic Systems and Control Conference (2017) pp. V002T021A010: 001–007.
52. Wilson, A. M., Lowe, J., Roskilly, K., Hudson, P. E., Golabek, K. and McNutt, J., “Locomotion dynamics of hunting in wild cheetahs,” Nature 498(7453), 185–189 (2013).
53. Full, R. J. and Koditschek, D. E., “Templates and anchors: Neuromechanical hypotheses of legged locomotion on land,” J Exp. biol. 202 (23), pp. 33253332 (1999).
54. Rone, W. and Ben-Tzvi, P., “Dynamic modeling and simulation of a yaw-angle quadruped maneuvering with a planar robotic tail,” J. Dynamic Syst. Meas. Control 138 (8), 084502 (2016).
55. Rone, W. and Ben-Tzvi, P., “Maneuvering and stabilizing control of a quadrupedal robot using a Serpentine Tail,” IEEE Conference on Control Technology and Applications (2017) pp. 1763–1768.
56. Saab, W. and Ben-Tzvi, P., “Design and Analysis of a Robotic Modular Leg,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2016) pp. V05AT07A062: 061–068.
57. Saab, W., Rone, W. and Ben-Tzvi, P., “Robotic modular leg: Design, analysis and experimentation,” J. Mech. Robot. 9 (2) pp. 024501: 024501–024506 (2016).
58. Laschi, C. and Cianchetti, M., “Soft robotics: New perspectives for robot bodyware and control,” Front. Bioeng. Biotechnol. 2, 3 (2014).
59. Kim, S., Laschi, C. and Trimmer, B., “Soft robotics: A bioinspired evolution in robotics,” Trends in Biotechnology 31 (5), 287294 (2013).
60. Rone, W. S. and Ben-Tzvi, P., “Continuum Robotic Tail Loading Analysis for Mobile Robot Stabilization and Maneuvering,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2014) pp. V05AT08A009–V005AT008A009.
61. Rone, W. S. and Ben-Tzvi, P., “Mechanics modeling of multisegment rod-driven continuum robots,” ASME J. Mech. Robot. 6 (4), 041006 (2014).
62. Rone, W. S. and Ben-Tzvi, P., “Continuum robot dynamics utilizing the principle of virtual power,” IEEE Trans. Robot. 30 (1), pp. 275287 (2014).
63. Cheng, N. G., Lobovsky, M. B., Keating, S. J., Setapen, A. M., Gero, K. I., Hosoi, A. E. and Iagnemma, K. D., “Design and Analysis of A Robust, Low-Cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media,” International Conference on Robotics and Automation (2012) pp. 4328–4333.
64. Hardesty, L., Soft robotic fish moves like the real thing (MIT, MIT News Office, 2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics