Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T12:22:19.872Z Has data issue: false hasContentIssue false

Robotics goes PRISMA

Published online by Cambridge University Press:  20 March 2024

Mario Selvaggio*
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Rocco Moccia
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Pierluigi Arpenti
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Riccardo Caccavale
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Fabio Ruggiero
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Jonathan Cacace
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Fanny Ficuciello
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Alberto Finzi
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Vincenzo Lippiello
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Luigi Villani
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
Bruno Siciliano
Affiliation:
Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
*
Corresponding author: Mario Selvaggio; Email: mario.selvaggio@unina.it

Abstract

In this article, we review the main results achieved by the research activities carried out at PRISMA Lab of the University of Naples Federico II where, for 35 years, an interdisciplinary team of experts developed robots that are ultimately useful to humans. We summarize the key contributions made in the last decade in the six research areas of dynamic manipulation and locomotion, aerial robotics, human-robot interaction, artificial intelligence and cognitive robotics, industrial robotics, and medical robotics. After a brief overview of each research field, the most significant methodologies and results are reported and discussed, highlighting their cross-disciplinary and translational aspects. Finally, the potential future research directions identified are discussed.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suomalainen, M., Karayiannidis, Y. and Kyrki, V., “A survey of robot manipulation in contact,” Robot Auton Syst 156, 104224 (2022).CrossRefGoogle Scholar
Yang, C., Zhang, B., Zeng, J., Agrawal, A. and Sreenath, K., “Dynamic Legged Manipulation of a Ball Through Multi-Contact Optimization,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2020) pp. 75137520.Google Scholar
Serra, D., Ruggiero, F., Donaire, A., Buonocore, L. R., Lippiello, V. and Siciliano, B., “Control of nonprehensile planar rolling manipulation: A passivity-based approach,” IEEE Trans Robot 35(2), 317329 (2019a).CrossRefGoogle Scholar
Chai, C.-Y., Peng, W.-H. and Tsao, S.-L., “Object rearrangement through planar pushing: A theoretical analysis and validation,” IEEE T Robot 38(5), 27032719 (2022).CrossRefGoogle Scholar
Satici, A., Ruggiero, F., Lippiello, V. and Siciliano, B., “Coordinate-Free Framework for Robotic Pizza Tossing and Catching,” In: IEEE International Conference on Robotics and Automation, (2016) pp. 39323939.Google Scholar
Ruggiero, F., Lippiello, V. and Siciliano, B., “Nonprehensile dynamic manipulation: A survey,” IEEE Robot Auto Lett 3(3), 17111718(2018b).CrossRefGoogle Scholar
Sardain, P. and Bessonnet, G., “Forces acting on a biped robot. center of pressure-zero moment point,” IEEE Trans Syst, Man, Cyber - Part A: Syst Humans 34(5), 630637 (2004).CrossRefGoogle Scholar
Farid, Y., Siciliano, B. and Ruggiero, F., “Review and descriptive investigation of the connection between bipedal locomotion and non-prehensile manipulation,” Annu Rev Control 53, 5169 (2022).CrossRefGoogle Scholar
McGeer, T., “Passive dynamic walking,” Int J Robot Res 9(2), 6282 (1990).CrossRefGoogle Scholar
Holm, J. and Spong, M., “Kinetic Energy Shaping for Gait Regulation of Underactuated Bipeds,” In: IEEE International conference on control applications, San Antonio, Texas, USA (2008) pp. 12321238.Google Scholar
Spong, M. and Bullo, F., “Controlled Symmetries and Passive Walking,” In: Proceeding IFAC Triennal World Congress, (Barcelona, Spain, 2002).Google Scholar
Spong, M., Holm, J. and Lee, D., “Passivity-Based Control of Bipedal Locomotion,” In: IEEE Robotics & Automation Magazine, vol. 12, (2007) pp. 3040.Google Scholar
Mao, L., Gao, F., Tian, Y. and Zhao, Y., “Novel method for preventing shin-collisions in six-legged robots by utilising a robot–terrain interference model,” Mech Mach Theory 151, 103897 (2020).CrossRefGoogle Scholar
Bledt, G., Wensing, P. M., Ingersoll, S. and Kim, S., “Contact Model Fusion for Event-Based Locomotion in Unstructured Terrains,” In: IEEE International Conference on Robotics and Automation (ICRA) 2018, (2018) pp. 43994406.Google Scholar
Fahmi, S., Mastalli, C., Focchi, M. and Semini, C., “Passive whole-body control for quadruped robots: Experimental validation over challenging terrain,” IEEE Robot Auto Lett 4(3), 25532560 (2019).CrossRefGoogle Scholar
Bertoncelli, F., Ruggiero, F. and Sabattini, L., “Linear Time-Varying mpc for Nonprehensile Object Manipulation with a Nonholonomic Mobile Robot,” In: IEEE International Conference on Robotics and Automation (ICRA), (2020) pp. 1103211038.Google Scholar
Bertoncelli, F., Selvaggio, M., Ruggiero, F. and Sabattini, L., “Task-Oriented Contact Optimization for Pushing Manipulation with Mobile Robots,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2022) pp. 16391646.Google Scholar
Morlando, V., Selvaggio, M. and Ruggiero, F., “Nonprehensile Object Transportation with a Legged Manipulator,” In: International Conference on Robotics and Automation (ICRA), 2022) pp. 66286634.CrossRefGoogle Scholar
Selvaggio, M., Cacace, J., Pacchierotti, C., Ruggiero, F. and Giordano, P. R., “A shared-control teleoperation architecture for nonprehensile object transportation,” IEEE Trans Robot 38(1), 569583 (2022).CrossRefGoogle Scholar
Selvaggio, M., Garg, A., Ruggiero, F., Oriolo, G. and Siciliano, B., “Non-prehensile object transportation via model predictive non-sliding manipulation control,” IEEE Trans Contr Syst T 31(5), 22312244 (2023).CrossRefGoogle Scholar
Subburaman, R., Selvaggio, M. and Ruggiero, F., “A non-prehensile object transportation framework with adaptive tilting based on quadratic programming,” IEEE Robot Auto Lett 8(6), 35813588 (2023).CrossRefGoogle Scholar
Donaire, A., Ruggiero, F., Buonocore, L. R., Lippiello, V. and Siciliano, B., “Passivity-based control for a rolling-balancing system: The nonprehensile disk-on-disk,” IEEE Trans Contr Syst Tech 25(6), 21352142 (2017).CrossRefGoogle Scholar
Fontanelli, G. A., Selvaggio, M., Buonocore, L. R., Ficuciello, F., Villani, L. and Siciliano, B., “A new laparoscopic tool with in-hand rolling capabilities for needle reorientation,” IEEE Robot Autom Lett 3(3), 23542361 (2018).CrossRefGoogle Scholar
Gutiérrez-Giles, A., Ruggiero, F., Lippiello, V. and Siciliano, B., “Nonprehensile manipulation of an underactuated mechanical system with second-order nonholonomic constraints: The robotic hula-hoop,” IEEE Robot Autom Lett 3(2), 11361143 (2018).CrossRefGoogle Scholar
Lippiello, V., Cacace, J., Santamaria-Navarro, A., Andrade-Cetto, J., Trujillo, M., Esteves, Y. and Viguria, A., “Hybrid visual servoing with hierarchical task composition for aerial manipulation,” IEEE Robot Auto Lett 1(1), 259266 (2016a).CrossRefGoogle Scholar
Ryu, J.-C., Ruggiero, F. and Lynch, K. M., “Control of nonprehensile rolling manipulation: Balancing a disk on a disk,” IEEE Trans Robot 29(5), 11521161 (2013).CrossRefGoogle Scholar
Serra, D., Ferguson, J., Ruggiero, F., Siniscalco, A., Petit, A., Lippiello, V. and Siciliano, B., “On the Experiments about the Nonprehensile Reconfiguration of a Rolling Sphere on a Plate,” In: 26th Mediterranean Conference on Control and Automation (MED), (2018) pp. 1320.Google Scholar
Gutiérrez-Giles, A., Ruggiero, F., Lippiello, V. and Siciliano, B., “Cosed-Loop Control of a Nonprehensile Manipulation System Inspired by a Pizza-Peel Mechanism,” In: European Control Conference, ( 2019) pp. 15801585.CrossRefGoogle Scholar
Kim, J.-T., Ruggiero, F., Lippiello, V. and Siciliano, B., “Planning Framework for Robotic Pizza Dough Stretching with a Rolling Pin,” In: Robot Dynamic Manipulation. Perception of Deformable Objects and Nonprehensile Manipulation Control, Siciliano, B. and Ruggiero, F. eds.),144 (Springer, Cham, 2022) pp. 229253.CrossRefGoogle Scholar
Ruggiero, F., Kim, J.-T., Gutiérrez-Giles, A., Satici, A., Donaire, A., Cacace, J., Buonocore, L. R., Fontanelli, G. A., Lippiello, V. and Siciliano, B., “Nonprehensile Manipulation Control and Task Planning for Deformable Object Manipulation: Results From the RoDyMan Project,” In: Informatics in Control, Automation and Robotics, Lecture Notes in Electrical Engineering, Gusikhin, O. and Madani, K. (Springer, Cham, 2020) pp. 76100.Google Scholar
Ruggiero, F., Petit, A., Serra, D., Satici, A. C., Cacace, J., Donaire, A., Ficuciello, F., Buonocore, L. R., Fontanelli, G. A., Lippiello, V., Villani, L. and Siciliano, B., “Nonprehensile manipulation of deformable objects: Achievements and perspectives from the roDyMan project,” IEEE Robot Autom Mag 25(3), 8392 (2018c).CrossRefGoogle Scholar
Arpenti, P., Donaire, A., Ruggiero, F. and Lippiello, V., “Energy Pumping-and-Damping for Gait Robustification of Underactuated Planar Biped Robots Within the Hybrid Zero Dynamics Framework,” In: IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), (2020) pp. 415421.Google Scholar
Arpenti, P., Donaire, A., Ruggiero, F. and Lippiello, V., “Uniform global exponential stabilizing passivity-based tracking controller applied to planar biped robots,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2022a) pp. 67396745.CrossRefGoogle Scholar
Arpenti, P., Ruggiero, F. and Lippiello, V., “Interconnection and Damping Assignment Passivity-Based Control for Gait Generation in Underactuated Compass-like Robots,” In: IEEE International Conference on Robotics and Automation (ICRA), (2020b) pp. 98029808.CrossRefGoogle Scholar
Arpenti, P., Ruggiero, F. and Lippiello, V., “A constructive methodology for the IDA-PBC of underactuated 2-doF mechanical systems with explicit solution of PDEs,” Int J Control, Auto Syst 20(1), 283297 (2022b).CrossRefGoogle Scholar
Nacusse, M., Arpenti, P., Ruggiero, F. and Lippiello, V., “Gait Generation for Underactuated Compass-Like Robots Using Dissipative Forces in the Controller,” In: IFAC-PapersOnLine. vol. 53 (IFAC World Congress, 2020) pp. 90239030.Google Scholar
Morlando, V., Lippiello, V. and Ruggiero, F., “Tethering a Human with a Quadruped Robot: A Guide Dog to Help Visually Impaired People,” In: 31st Mediterranean Conference on Control and Automation (MED) 2023, (2023) pp. 547553.Google Scholar
Morlando, V. and Ruggiero, F., “Disturbance Rejection for Legged Robots Through a Hybrid Observer,” In: 30th Mediterranean Conference on Control and Automation (MED), 2022) pp. 743748.CrossRefGoogle Scholar
Morlando, V., Teimoorzadeh, A. and Ruggiero, F., “Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots,” Mech Mach Theory 164, 104412 (2021).CrossRefGoogle Scholar
Lippiello, V., Ruggiero, F. and Siciliano, B., “The effect of shapes in input-state linearization for stabilization of nonprehensile planar rolling dynamic manipulation,” IEEE Robot Autom Lett 1(1), 492499 (2016b).CrossRefGoogle Scholar
Heins, A. and Schoellig, A. P., “Keep it upright: Model predictive control for nonprehensile object transportation with obstacle avoidance on a mobile manipulator,” IEEE Robot Auto Lett 8(12), 79867993 (2023).CrossRefGoogle Scholar
Muchacho, R. I. C., Laha, R., Figueredo, L. F. and Haddadin, S., “A Solution to Slosh-Free Robot Trajectory Optimization,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2022) pp. 223230.Google Scholar
Muchacho, R. I. C., Bien, S., Laha, R., Naceri, A., Figueredo, L. F. and Haddadin, S.. Shared Autonomy Control for Slosh-Free Teleoperation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2023) pp. 1067610683.Google Scholar
Meriçli, T., Veloso, M. and Akın, H. L., “Push-manipulation of complex passive mobile objects using experimentally acquired motion models,” Auton Robot 38(3), 317329 (2015).CrossRefGoogle Scholar
Novin, R. S., Yazdani, A., Merryweather, A. and Hermans, T., “A model predictive approach for online mobile manipulation of non-holonomic objects using learned dynamics,” Int J Robot Res 40(4-5), 815831 (2021).CrossRefGoogle Scholar
Mahony, R. and Hamel, T., “Robust trajectory tracking for a scale model autonomous helicopter,” Int J Robust Nonlin 14(12), 10351059 (2004).CrossRefGoogle Scholar
Nonami, K., Kendoul, F., Suzuki, S. and Wang, W., “Autonomous Flying Robots,” In: Unmanned Aerial Vehicles and Micro Aerial Vehicles, (Springer-Verlag, Berlin Heidelberg, D, 2010).Google Scholar
Spica, R., Franchi, A., Oriolo, G., Bülthoff, H. and Giordano, P. R., “Aerial Grasping of a Moving Target with a Quadrotor UAV,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (2012) pp. 49854992.Google Scholar
Antonelli, G., Cataldi, E., Giordano, P. R., Chiaverini, S. and Franchi, A., “Experimental Validation of a New Adaptive Control Scheme for Quadrotors MAVs,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2013, Tokyo, J (2013) pp. 34963501.Google Scholar
Dydek, Z., Annaswamy, A. and Lavretsky, E., “Adaptive control of quadrotor UAVs: A design trade study with flight evaluations,” IEEE Trans Contr Syst Tech 21(4), 14001406 (2013).CrossRefGoogle Scholar
Roberts, A. and Tayebi, A., “Adaptive position tracking of VTOL UAVs,” IEEE Trans Robot 27(1), 129142 (2011).CrossRefGoogle Scholar
Yüksel, B., Secchi, C., Bülthoff, H. and Franchi, A., “A Nonlinear Force Observer for Quadrotors and Application to Physical Interactive Tasks,” In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France (2014) pp. 433440.Google Scholar
Egeland, O. and Godhavn, J.-M., “Passivity-based adaptive attitude control of a rigid spacecraft,” IEEE Trans Automat Contr 39(4), 842846 (1994).CrossRefGoogle Scholar
Ha, C., Zuo, Z., Choi, F. and Lee, D., “Passivity-based adaptive backstepping control of quadrotor-type UAVs,” Robot Auton Syst 62(9), 13051315 (2014).CrossRefGoogle Scholar
Valvanis, K.. Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy volume 33 of Intelligent Systems, Control and Automation: Science and Engineering (Springer, Netherlands, 2007).Google Scholar
Valvanis, K. and Vachtsevanos, G.. Handbook of Unmanned Aerial Vehicles (Springer, Netherlands, 2015).CrossRefGoogle Scholar
Oller, A., Tognon, M., Suarez, A., Lee, D. and Franchi, A., “Past, present, and future of aerial robotic manipulators,” IEEE Trans Robot 38(1), 626645 (2022).CrossRefGoogle Scholar
Ruggiero, F., Lippiello, V. and Ollero, A., “Aerial manipulation: A literature review,” IEEE Robot Auto Lett 3(3), 19571964 (2018a).CrossRefGoogle Scholar
Ruggiero, F., Cacace, J., Sadeghian, H. and Lippiello, V., “Passivity-based control of vtol uavs with a momentum-based estimator of external wrench and unmodeled dynamics,” Robot Auton Syst 72, 139151 (2015a).CrossRefGoogle Scholar
Sotos, S. M. O., Cacace, J., Ruggiero, F. and Lippiello, V., “Active disturbance rejection control for the robust flight of a passively tilted hexarotor,” Drones 6(9), 250 (2022a).Google Scholar
Sotos, S. M. O., Ruggiero, F. and Lippiello, V., “Globally attractive hyperbolic control for the robust flight of an actively tilting quadrotor,” Drones 6(12), 373 (2022b).Google Scholar
Lippiello, V., Ruggiero, F. and Serra, D., “Emergency Landing for a Quadrotor in Case of a Propeller Failure: A Backstepping Approach,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014a) pp. 47824788.CrossRefGoogle Scholar
Lippiello, V., Ruggiero, F. and Serra, D.. Emergency Landing for a Quadrotor in Case of a Propeller Failure: A PID Based Approach. In: 12th IEEE International Symposium on Safety, Security, and Rescue Robotics, 2014b.Google Scholar
D’Ago, G., Selvaggio, M., Suarez, A., Gañán, F. J., Buonocore, L. R., Di Castro, M., Lippiello, V., Ollero, A. and Ruggiero, F., “Modelling and identification methods for simulation of cable-suspended dual-arm robotic systems,” Robot Auton Syst 175, 104643 (2024).CrossRefGoogle Scholar
Ruggiero, F., Trujillo, M., Cano, R., Ascorbe, H., Viguria, A., Peréz, C., Lippiello, V., Ollero, A. and Siciliano, B., “A Multilayer Control for Multirotor uavs Equipped with a Servo Robot Arm,” In: IEEE International Conference on Robotics and Automation, (2015b) pp. 40144020.CrossRefGoogle Scholar
Cacace, J., Fontanelli, G. A. and Lippiello, V., “A Novel Hybrid Aerial-Ground Manipulator for Pipeline Inspection Tasks,” In: Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO), Biograd na Moru, Croatia, (2021) pp. 16.Google Scholar
Cacace, J., Silva, M. D., Fontanelli, G. A. and Lippiello, V., “A novel articulated rover for industrial pipes inspection tasks,” In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), (2021b) pp. 10271032.CrossRefGoogle Scholar
Cuniato, E., Cacace, J., Selvaggio, M., Ruggiero, F. and Lippiello, V.. A Hardware-in-the- Loop Simulator for Physical Human-Aerial Manipulator Cooperation. In: 20th International Conference on Advanced Robotics, ( 2021) pp. 830835.CrossRefGoogle Scholar
Lippiello, V., Fontanelli, G. A. and Ruggiero, F., “Image-based visual-impedance control of a dual-arm aerial manipulator,” IEEE Robot Auto Lett 3(3), 18561863 (2018).CrossRefGoogle Scholar
D’Angelo, S., Pagano, F., Ruggiero, F. and Lippiello, V., “Development of a Control Framework to Autonomously Install Clip Bird Diverters on High-Voltage Lines,” In: International Conference on Unmanned Aircraft System, (2023).CrossRefGoogle Scholar
Selvaggio, M., Cognetti, M., Nikolaidis, S., Ivaldi, S. and Siciliano, B., “Autonomy in physical human-robot interaction: A brief survey,” IEEE Robot Autom Lett 6(4), 79897996 (2021).CrossRefGoogle Scholar
Johannsmeier, L. and Haddadin, S., “A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes,” IEEE Robot Autom Lett 2(1), 4148 (2017).CrossRefGoogle Scholar
Cacace, J., Caccavale, R., Finzi, A. and Grieco, R., “Combining human guidance and structured task execution during physical human–robot collaboration,” J Intell Manuf 34(7), 30533067 (2022).CrossRefGoogle Scholar
Cacace, J., Caccavale, R., Finzi, A. and Lippiello, V., “Interactive plan execution during human-robot cooperative manipulation,” IFAC-PapersOnLine 51(22), 500505 (2018).CrossRefGoogle Scholar
Goodrich, M. A. and Schultz, A. C., “Human-robot interaction: A survey,” Found Trends® Human-Comp Inter 1(3), 203275 (2008).CrossRefGoogle Scholar
Yang, G.-Z., Cambias, J., Cleary, K., Daimler, E., Drake, J., Dupont, P. E., Hata, N., Kazanzides, P., Martel, S., Patel, R. V., Santos, V. J. and Taylor, R. H., “Medical robotics 2014;regulatory, ethical, and legal considerations for increasing levels of autonomy,” Sci Robot 2(4), eaam8638 (2017).CrossRefGoogle Scholar
Kanda, T. and Ishiguro, H.. Human-Robot Interaction in Social Robotics (CRC Press Boca Raton, Florida, (2017).CrossRefGoogle Scholar
Schilling, M., Burgard, W., Muelling, K., Wrede, B. and Ritter, H., “Shared autonomy–learning of joint action and human-robot collaboration,” Front Neurorobotics 13, 16 (2019).CrossRefGoogle ScholarPubMed
Bruemmer, D. J., Dudenhoeffer, D. D. and Marble, J. L., “Dynamic-Autonomy for Urban Search and Rescue,” In: AAAI Mobile Robot Competition, (2002) pp. 3337.Google Scholar
Dias, M. B., Kannan, B., Browning, B., Jones, E., Argall, B., Dias, M. F., Zinck, M., Veloso, M. and Stentz, A., “Sliding Autonomy for Peer-to-Peer Human-Robot Teams,” In: International Conference on Intelligent Autonomous Systems, (2008) pp. 332341.Google Scholar
Kortenkamp, D., Keirn-Schreckenghost, D. and Bonasso, R. P., “Adjustable Control Autonomy for Manned Space Flight,” In: IEEE Aerospace Conference (AeroConf), 7, (2000) pp. 629640.Google Scholar
Anderson, S., Peters, S., Iagnemma, K. and Overholt, J., “Semi-Autonomous Stability Control and Hazard Avoidance for Manned and Unmanned Ground Vehicles,” In: The 27th Army Science Conference, (2010) pp. 18.Google Scholar
Desai, M. and Yanco, H. A., “Blending Human and Robot Inputs for Sliding Scale Autonomy,” In: IEEE International Workshop on Robot and Human Interactive Communication (ROMAN), (2005) pp. 537542.Google Scholar
Pitzer, B., Styer, M., Bersch, C., DuHadway, C. and Becker, J., “Towards Perceptual Shared Autonomy for Robotic Mobile Manipulation,” In: IEEE International Conference on Robotics and Automation, ( 2011) pp. 62456251.CrossRefGoogle Scholar
Sellner, B., Simmons, R. and Singh, S., “User Modelling for Principled Sliding Autonomy in Human-Robot Teams,” In: Multi-Robot Systems. From Swarms to Intelligent Automata. vol. 3 (Springer, 2005) pp. 197208.Google Scholar
Dragan, A. D. and Srinivasa, S. S., “A Policy-Blending Formalism for Shared Control,” Int J Robot Res 32(7), 790805 (2013).CrossRefGoogle Scholar
Javdani, S., Srinivasa, S. S. and Bagnell, J. A., “Shared Autonomy Via Hindsight Optimization,” In: Robotics Science and Systems, (NIH Public Access, 2015).Google Scholar
Aarno, D., Ekvall, S. and Kragic, D., “Adaptive virtual fixtures for machine-assisted teleoperation tasks,” In: IEEE International Conference on Robotics and Automation, (2005) pp11391144.Google Scholar
Crandall, J. W. and Goodrich, M. A.. Characterizing Efficiency of Human Robot Interaction: A Case Study of Shared-Control teleoperation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (2002) pp. 12901295.Google Scholar
Selvaggio, M., Abi-Farraj, F., Pacchierotti, C., Giordano, P. R. and Siciliano, B., “Haptic-based shared-control methods for a dual-arm system,” IEEE Robot Auto Lett 3(4), 42494256 (2018a).CrossRefGoogle Scholar
Selvaggio, M., Giordano, P. R., Ficuciello, F. and Siciliano, B.. Passive task-prioritized shared-control teleoperation with haptic guidance. In: International Conference on Robotics and Automation (ICRA), (2019c) pp. 430436.CrossRefGoogle Scholar
Selvaggio, M., Fontanelli, G. A., Ficuciello, L., Villani, F. and Siciliano, B., “Passive virtual fixtures adaptation in minimally invasive robotic surgery,” IEEE Robot Auto Lett 3(4), 31293136 (2018b).CrossRefGoogle Scholar
Selvaggio, M., Notomista, G., Chen, F., Gao, B., Trapani, F. and Caldwell, D.. Enhancing bilateral teleoperation using camera-based online virtual fixtures generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2016) pp. 14831488.Google Scholar
Selvaggio, M., A.Ghalamzan, E., Moccia, R., Ficuciello, F. and Siciliano, B.. Haptic-guided shared control for needle grasping optimization in minimally invasive robotic surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2019b) pp. 36173623.CrossRefGoogle Scholar
Rodriguez-Guerra, D., Sorrosal, G., Cabanes, I. and Calleja, C., “Human-robot interaction review: Challenges and solutions for modern industrial environments,” IEEE Access 9, 108557108578 (2021).CrossRefGoogle Scholar
Schultheis, H. and Cooper, R. P., Everyday activities, (2022).CrossRefGoogle Scholar
Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoğlu, A. K. and Bartels, G., “Know rob 2.0–a 2nd Generation Knowledge Processing Framework for Cognition-Enabled Robotic Agents,” In: IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE (2018) pp. 512519.Google Scholar
Lemaignan, S., Warnier, M., Sisbot, E. A., Clodic, A. and Alami, R., “Artificial cognition for social human–robot interaction: An implementation,” Artif Intell 247, 4569 (2017).CrossRefGoogle Scholar
Beßler, D., Porzel, R., Pomarlan, M., Beetz, M., Malaka, R. and Bateman, J., “A Formal Model of Affordances for Flexible Robotic Task Execution,” In: ECAI, (IOS Press, 2020) pp. 24252432.Google Scholar
de la Cruz, P., Piater, J. and Saveriano, M., “Reconfigurable Behavior Trees: Towards an Executive framework meeting high-level decision making and control layer features,” In: IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2020, (IEEE, 2020) pp. 19151922.CrossRefGoogle Scholar
Carbone, A., Finzi, A., Orlandini, A. and Pirri, F., “Model-based control architecture for attentive robots in rescue scenarios,” Auton Robot 24(1), 87120 (2008).CrossRefGoogle Scholar
Karpas, E., Levine, S. J., Yu, P. and Williams, B. C., “Robust Execution of Plans for Human-Robot Teams,” In: ICAPS-2015, (2015) pp. 342346.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. and Cohen, J. D., “Conflict monitoring and cognitive control,” Psychol Rev 108(3), 624652 (2001).CrossRefGoogle ScholarPubMed
Cooper, R. and Shallice, T., “Contention scheduling and the control of routine activities,” Cogn Neuropsychol 17(4), 297338 (2000).CrossRefGoogle ScholarPubMed
Cooper, R. and Shallice, T., “Hierarchical schemas and goals in the control of sequential behavior,” Psychol Rev 113(4), 887916 (2006).CrossRefGoogle ScholarPubMed
Petrík, V., Tapaswi, M., Laptev, I. and Sivic, J., “Learning Object Manipulation Skills via Approximate State Estimation from Real Videos,” In: Conference on Robot Learning, (PMLR, 2021) pp. 296312.CrossRefGoogle Scholar
Ramirez-Amaro, K., Yang, Y. and Cheng, G., “A Survey on Semantic-Based Methods for the Understanding of Human Movements,” Robot Auton Syst 119, 3150 (2019).CrossRefGoogle Scholar
Mansouri, M., Pecora, F. and Schüller, P., “Combining task and motion planning: Challenges and guidelines,” Front Robot AI 8, 637888 (2021).CrossRefGoogle ScholarPubMed
Cacace, J., Caccavale, R., Finzi, A. and Lippiello, V., “Attentional Multimodal Interface for Multidrone Search in the Alps,” In: IEEE international conference on systems, man, and cybernetics (SMC), IEEE (2016) pp. 001178001183.Google Scholar
Caccavale, R., Cacace, J., Fiore, M., Alami, R. and Finzi, A., “Attentional Supervision of Human-Robot Collaborative Plans,” In: 25th IEEE International Symposium on Robot and Human Interactive Communication (RO_MAN), IEEE (2016) pp. 867873.Google Scholar
Caccavale, R. and Finzi, A., “Plan Execution and Attentional Regulations for Flexible Human-Robot Interaction,” In: IEEE International Conference on Systems, Man, and Cybernetics 2015, IEEE (2015) pp. 24532458.Google Scholar
Caccavale, R. and Finzi, A., “Flexible task execution and attentional regulations in human-robot interaction,” IEEE Trans Cogn Develp Syst 9(1), 6879 (2016).CrossRefGoogle Scholar
Caccavale, R. and Finzi, A., “Toward a Cognitive Control Framework for Explainable Robotics,” In: Human-Friendly Robotics 2020: 13th International Workshop, (Springer, 2021)4658.CrossRefGoogle Scholar
Caccavale, R. and Finzi, A., “A robotic cognitive control framework for collaborative task execution and learning,” Top Cogn Sci 14(2), 327343(2022b).CrossRefGoogle ScholarPubMed
Caccavale, R., Leone, E., Lucignano, L., Rossi, S., Staffa, M. and Finzi, A., “Attentional Regulations in a Situated Human-Robot Dialogue,” In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, IEEE (2014) pp. 844849.Google Scholar
Caccavale, R. and Finzi, A., “Learning attentional regulations for structured tasks execution in robotic cognitive control,” Auton Robot 43, 22292243 (2019).CrossRefGoogle Scholar
Caccavale, R., Saveriano, M., Finzi, A. and Lee, D., “Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction,” Auton Robot 43(6), 12911307 (2019).CrossRefGoogle Scholar
Caccavale, R., Saveriano, M., Fontanelli, G. A., Ficuciello, F., Lee, D. and Finzi, A., “Imitation Learning and Attentional Supervision of Dual-Arm Structured Tasks,” In: Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), IEEE (2017) pp. 6671.Google Scholar
Caccavale, R., Ermini, M., Fedeli, E., Finzi, A., Lippiello, V. and Tavano, F., “A multi-robot deep Q-learning framework for priority-based sanitization of railway stations,” Appl Intell 53, 2059520613 (2023a)CrossRefGoogle Scholar
Caccavale, R., Ermini, M., Fedeli, E., Finzi, A., Lippiello, V. and Tavano, F., “Toward a Heterogeneous Multi-Robot Framework for Priority-Based Sanitization of Railway Stations,” In: AIxIA 2022–Advances in Artificial Intelligence: XXIst International Conference of the Italian Association for Artificial Intelligence, AIxIA 2022. vol. 2023b (Springer, Udine, Italy, 2022) pp. 387401.Google Scholar
Caccavale, R. and Finzi, A., “A rapidly-exploring random trees approach to combined task and motion planning,” Robot Auton Syst 157, 104238 (2022a).CrossRefGoogle Scholar
Norman, D. A. and Shallice, T., Attention to action: Willed and automatic control of behavior, 4 (1986).CrossRefGoogle Scholar
Echelmeyer, W., Kirchheim, A. and Wellbrock, E., “Robotics-Logistics: Challenges for Automation of Logistic Processes,” In: IEEE International Conference on Automation and Logistics 2008, (IEEE, 2008) pp. 20992103.CrossRefGoogle Scholar
Sakamoto, T., Harada, K. and Wan, W., “Real-time planning robotic palletizing tasks using reusable roadmaps,” J Robot, Network Art Life 6(4), 240245 (2020).CrossRefGoogle Scholar
Jocas, M., Kurrek, P., Zoghlami, F., Gianni, M. and Salehi, V.. Ai-Based Learning Approach with Consideration of Safety Criteria on Example of a Depalletization Robot. In: Proceedings of the Design Society: International Conference on Engineering Design, (Cambridge University Press, 2019) pp. 20412050.CrossRefGoogle Scholar
Nakamoto, H., Eto, H., Sonoura, T., Tanaka, J. and Ogawa, A.. High-Speed and Compact Depalletizing Robot Capable of Handling Packages Stacked Complicatedly. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2016) pp. 344349.CrossRefGoogle Scholar
Schwarz, M., Milan, A., Periyasamy, A. S. and Behnke, S., “Rgb-d object detection and semantic segmentation for autonomous manipulation in clutter,” Int J Robot Res 37(4-5), 437451 (2018).CrossRefGoogle Scholar
Katsoulas, D. and Kosmopoulos, D., “An Efficient Depalletizing System Based on 2d Range Imagery,” In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), (2001) pp. 305312.Google Scholar
Krug, R., Stoyanov, T., Tincani, V., Andreasson, H., Mosberger, R., Fantoni, G. and Lilienthal, A. J., “The next step in robot commissioning: Autonomous picking and palletizing,” IEEE Robot Auto Lett 1(1), 546553 (2016).CrossRefGoogle Scholar
Tanaka, J., Ogawa, A., Nakamoto, H., Sonoura, T. and Eto, H., “Suction pad unit using a bellows pneumatic actuator as a support mechanism for an end effector of depalletizing robots,” ROBOMECH Journal 7(1), 2 (2020).CrossRefGoogle Scholar
Moura, F. M. and Silva, M. F.. Application for Automatic Programming of Palletizing Robots. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) 2018, (IEEE, 2018) pp. 4853.CrossRefGoogle Scholar
Caccavale, R., Arpenti, P., Paduano, G., Fontanellli, A., Lippiello, V., Villani, L. and Siciliano, B., “A flexible robotic depalletizing system for supermarket logistics,” IEEE Robot Auto Lett 5(3), 44714476 (2020).CrossRefGoogle Scholar
Arpenti, P., Caccavale, R., Paduano, G., Fontanelli, G. A., Lippiello, V., Villani, L. and Siciliano, B., “Rgb-d recognition and localization of cases for robotic depalletizing in supermarkets,” IEEE Robotics and Automation Letters 5(4), 62336238 (2020a).CrossRefGoogle Scholar
Fontanelli, G. A., Paduano, G., Caccavale, R., Arpenti, P., Lippiello, V., Villani, L. and Siciliano, B., “A reconfigurable gripper for robotic autonomous depalletizing in supermarket logistics,” IEEE Robot Autom Lett 5(3), 46124617 (2020).CrossRefGoogle Scholar
Bowyer, S. A., Davies, B. L. and Baena, F. R., “Active constraints/Virtual fixtures: A survay,” IEEE Trans Robot 30(1), 138157 (2014).CrossRefGoogle Scholar
Li, M., Ishii, M. and Taylor, R. H., “Spatial motion constraints using virtual fixtures generated by anatomy,” IEEE Trans Robot 23(1), 419 (2007).CrossRefGoogle Scholar
Marinho, M. M., Adorno, B. V., k., H. and Mitsuishi, M., “Dynamic active constraints for surgical robots using vector field inequalities,” IEEE Trans Robot 35(5), 11661185 (2019).CrossRefGoogle Scholar
Ames, A. D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K. and Tabuada, P., “Control Barrier Functions: Theory and Applications,” In: Proc. 18th European Control Conference (ECC), (2019) pp. 34203431.Google Scholar
Kim, U., Kim, Y. B., Seok, D.-Y., So, J. and Choi, H. R., “A surgical palpation probe with 6-axis force/torque sensing capability for minimally invasive surgery,” IEEE Trans Ind Electron 65(3), 27552765 (2018).CrossRefGoogle Scholar
Lee, D.-H., Kim, U., Gulrez, T., Yoon, W. J., Hannaford, B. and Choi, H. R., “A laparoscopic grasping tool with force sensing capability,” IEEE/ASME Trans Mech 21(1), 130141 (2016).Google Scholar
Catalano, M., Grioli, G., Farnioli, E., Serio, A., Piazza, C. and Bicchi, A., “Adaptive synergies for the design and control of the pisa/iit softhand,” Int J Robot Res 33(5), 768782 (2014).CrossRefGoogle Scholar
Piazza, C., Catalano, M. G., Godfrey, S. B., Rossi, M., Grioli, G., Bianchi, M., Zhao, K. and Bicchi, A., “The softhand pro-h: A hybrid body-controlled, electrically powered hand prosthesis for daily living and working,” IEEE Robot Autom Mag 24(4), 87101 (2017).CrossRefGoogle Scholar
Moccia, R., Selvaggio, M., Villani, L., Siciliano, B. and Ficuciello, F.. Vision-Based Virtual Fixtures Generation for Robotic-Assisted Polyp Dissection Procedures. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2019) pp. 79347939.Google Scholar
Moccia, R., Iacono, C., Siciliano, B. and Ficuciello, F., “Vision-based dynamic virtual fixtures for tools collision avoidance in robotic surgery,” IEEE Robot Auto Lett 5(2), 16501655 (2020).CrossRefGoogle Scholar
Liu, H., Selvaggio, M., Ferrentino, P., Moccia, R., Pirozzi, S., Bracale, U. and Ficuciello, F., “The MUSHA hand II: A multi-functional hand for robot-assisted laparoscopic surgery,” IEEE/ASME Trans Mech 26(1), 393404 (2020).Google Scholar
Saini, S., Ficuciello, F., Liu, H. and U, Bracale Patent Granted n. 102019000001187, Application Submission Date Jan 2019,” In: Elemento Terminale Per Dispositivi Di Presa Per Interventi Chirurgici, in Particolare Interventi a Minima Invasività, (2019).Google Scholar
Selvaggio, M., Fontanelli, G. A., Marrazzo, V. R., Bracale, U., Irace, A., Breglio, G., Villani, L., Siciliano, B. and Ficuciello, F., “The musha underactuated hand for robot-aided minimally invasive surgery,” Int J Med Robot Comp Assis Surg 15(3), e1981 (2019a).CrossRefGoogle ScholarPubMed
Moccia, R. and Ficuciello, F., “Autonomous Endoscope Control Algorithm with Visibility and Joint Limits Avoidance Constraints for Da Vinci Research kit robot,” In: IEEE International Conference on Robotics and Automation (ICRA), (2023) pp. 776781.Google Scholar
Ferro, M., Brunori, D., Magistri, F., Saiella, L., Selvaggio, M. and Fontanelli, G. A., “A Portable Da Vinci Simulator in Virtual Reality,” In: Third IEEE International Conference on Robotic Computing (IRC), (2019) pp. 447448.Google Scholar
Fontanelli, G. A., Selvaggio, M., Ferro, M., Ficuciello, F., Vendittelli, M. and Siciliano, B., “Portable dVRK: An augmented V-REP simulator of da vinci research kit,” Acta Polytech Hung 16(8), 7998 (2019).Google Scholar
Ghafoor, A., Dai, J. S. and Duffy, J., “Stiffness modeling of the soft-finger contact in robotic grasping,” J Mech Design 126(4), 646656 (2004).CrossRefGoogle Scholar
Sallam, M., Fontanelli, G. A., Gallo, A., La Rocca, R., Di Spiezio Sardo, A., Longo, N. and Ficuciello, F., “Prototype realization of a human hand-inspired needle driver for robotic-assisted surgery,” IEEE Trans Med Robot Bio 5(4), 843856 (2023).CrossRefGoogle Scholar
Coevoet, E., Adagolodjo, Y., Lin, M., Duriez, C. and Ficuciello, F., “Planning of soft-rigid hybrid arms in contact with compliant environment: Application to the transrectal biopsy of the prostate,” IEEE Robot Auto Lett 7(2), 48534860 (2022).CrossRefGoogle Scholar
Canbay, D., Ferrentino, P., Liu, H., Moccia, R., Pirozzi, S., Siciliano, B. and Ficuciello, F., “Calibration of Tactile/Force Sensors for Grasping with the PRISMA Hand II,” In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), (2021) pp. 442447.Google Scholar
Leccia, A., Sallam, M., Grazioso, S., Caporaso, T., Di Gironimo, G. and Ficuciello, F., “Development and testing of a virtual simulator for a myoelectric prosthesis prototype – the prisma hand ii – to improve its usability and acceptability,” Eng Appl Artif Intel 121, 105853 (2023).CrossRefGoogle Scholar
Gong, Y., Sun, G., Nair, A., Bidwai, A., R., C. S., Grezmak, J., Sartoretti, G. and Daltorio, K. A., “Legged robots for object manipulation: A review,” Front Mech Eng 9 (2023).CrossRefGoogle Scholar
Jia, G., Huang, H., Li, B., Wu, Y., Cao, Q. and Guo, H., “Synthesis of a novel type of metamorphic mechanism module for large scale deployable grasping manipulators,” Mech Mach Theory 128, 544559 (2018).CrossRefGoogle Scholar
Jia, G., Huang, H., Wang, S. and Li, B., “Type synthesis of plane-symmetric deployable grasping parallel mechanisms using constraint force parallelogram law,” Mech Mach Theory 161, 104330 (2021).CrossRefGoogle Scholar
Bellicoso, C. D., Krämer, K., Stäuble, M., Sako, D., Jenelten, F., Bjelonic, M. and Hutter, M., “Alma - Articulated Locomotion and Manipulation for a Torque-Controllable Robot,” In: International Conference on Robotics and Automation (ICRA), (2019) pp. 84778483.Google Scholar
Ferrolho, H., Ivan, V., Merkt, W., Havoutis, I. and Vijayakumar, S., “Roloma: Robust loco-manipulation for quadruped robots with arms,” Auton Robot 47(8), 14631481 (2023).CrossRefGoogle Scholar
Costanzo, M., Natale, C. and Selvaggio, M., “Visual and Haptic Cues for Human-Robot Handover*,” In: 32nd IEEE International Conference on Robot and Human Interactive Communication (RO–MAN), (2023) pp. 26772682.Google Scholar
Dai, J. S. and Caldwell, D. G., “Origami-based robotic paper-and-board packaging for food industry,” Trend Food Sci Tech 21(3), 153157 (2010).CrossRefGoogle Scholar