Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T06:02:49.335Z Has data issue: false hasContentIssue false

Robust Active Disturbance Rejection Control For Flexible Link Manipulator

Published online by Cambridge University Press:  12 April 2019

Raouf Fareh*
Affiliation:
Department of Mechanical and Nucluar Engineering, College of Engineering, University of Sharjah, UAE E-mail: malshabi@sharjah.ac.ae
Mohammad Al-Shabi
Affiliation:
Department of Mechanical and Nucluar Engineering, College of Engineering, University of Sharjah, UAE E-mail: malshabi@sharjah.ac.ae
Maamar Bettayeb
Affiliation:
Department of Mechanical and Nucluar Engineering, College of Engineering, University of Sharjah, UAE E-mail: malshabi@sharjah.ac.ae MCEIES, King Abdulaziz University, Jeddah, KSA E-mail: maamar@sharjah.ac.ae
Jawhar Ghommam
Affiliation:
Department of Electrical and Computer Engineering, Sultan Qaboos University, Oman E-mail: jghommam@gmail.com
*
*Corresponding author. E-mail: rfareh@sharjah.ac.ae
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents an advanced robust active disturbance rejection control (ADRC) for flexible link manipulator (FLM) to track desired trajectories in the joint space and minimize the link’s vibrations. It has been shown that the ADRC technique has a very good disturbance rejection capability. Both the internal dynamics and the external disturbances can be estimated and compensated in real time. The proposed robust ADRC control law is developed to solve the problems existing in the original version of the ADRC related to the disturbance estimation errors and the variation of the parameters. Indeed, these parameters cannot be included in the existing disturbances and then be estimated by the extended state observer. The proposed control law is based on the sliding mode technique, which considers the uncertainties in the control gains and disturbance estimation errors. Lyapunov theory is used to prove the closed-loop stability of the system. The proposed control strategy is simulated and tested experimentally on one FLM. The effect of the observer bandwidth on the system performance is simulated and studied to select the best values of the bandwidth frequency. The simulation and experimental results show that the proposed robust ADRC has better performance than the traditional ADRC.

Type
Articles
Copyright
© Cambridge University Press 2019 

References

Pal, S., Stephanou, H. E. and Cook, G., “Optimal control of a single-link flexible manipulator,” J. Intell. Rob. Syst. 2(2–3), 187199 (1989).10.1007/BF00238688CrossRefGoogle Scholar
Theodore, R. J. and Ghosal, A., “Robust control of multilink flexible manipulators,” Mech. Mach. Theory 38(4), 367377 (2003).10.1016/S0094-114X(02)00125-8CrossRefGoogle Scholar
Wang, D. and Vidyasagar, M., “Feedback Linearizability of Multi-link Manipulations with One Flexible Link,” Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, USA (IEEE, 1989) pp. 20722077.10.1109/CDC.1989.70532CrossRefGoogle Scholar
Moallem, M., Patel, R. V. and Khorasani, K., “An inverse dynamics control strategy for tip position tracking of flexible multi-link manipulators,” J. Rob. Syst. 14(9), 649658 (1997).10.1002/(SICI)1097-4563(199709)14:9<649::AID-ROB2>3.0.CO;2-L3.0.CO;2-L>CrossRefGoogle Scholar
Siciliano, B. and Book, W. J., “A singular perturbation approach to control of lightweight flexible manipulators,” Int. J. Rob. Res. 7(4), 7990 (1988).10.1177/027836498800700404CrossRefGoogle Scholar
Lewis, F. L. and Vandegrift, M., “Flexible Robot Arm Control by a Feedback Linearization/Singular Perturbation Approach,” IEEE International Conference on Robotics and Automation, Proceedings, Atlanta, GA, USA (IEEE, 1993) pp. 729736.Google Scholar
Fareh, R., Saad, M. and Saad, M., “Distributed control strategy for flexible link manipulators,” Robotica 33(4), 768786 (2015).10.1017/S0263574714000459CrossRefGoogle Scholar
Raouf, F., Mohamad, S., Maarouf, S. and Maamar, B., “Distributed adaptive control strategy for flexible link manipulators,” Robotica 35(7), 15621584 (2017).10.1017/S0263574716000448CrossRefGoogle Scholar
Umeno, T. and Hori, Y., “Robust speed control of DC servomotors using modern two degrees-of-freedom controller design,” IEEE Trans. Ind. Electron. 38(5), 363368 (1991).10.1109/41.97556CrossRefGoogle Scholar
Profeta, J. A., Vogt, W. G. and Mickle, M. H., “Disturbance estimation and compensation in linear systems,” IEEE Trans. Aerosp. Electron. Syst. 26(2), 225231 (1990).10.1109/7.53455CrossRefGoogle Scholar
Kwon, S. and Chung, W. K., “Combined synthesis of state estimator and perturbation observer,” J. Dyn. Syst. Meas. Contr. 125(1), 1926 (2003).10.1115/1.1540112CrossRefGoogle Scholar
Gao, Z., “Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design,” American Control Conference, Minneapolis, MN, USA (IEEE, 2006) p. 7.Google Scholar
Gao, Z., “Scaling and parameterization based controller tuning,” Proceedings of the American Control Conference, New York, USA (IEEE, 2003) pp. 49894996.Google Scholar
Zheng, S., Han, B. and Guo, L., “Composite hierarchical antidisturbance control for magnetic bearing system subject to multiple external disturbances,” IEEE Trans. Ind. Electron. 61(12), 70047012 (2014).10.1109/TIE.2014.2316226CrossRefGoogle Scholar
Chang, X., Li, Y., Zhang, W., Wang, N. and Xue, W., “Active disturbance rejection control for a flywheel energy storage system,” IEEE Trans. Ind. Electron. 62(2), 9911001 (2015).10.1109/TIE.2014.2336607CrossRefGoogle Scholar
Yao, J., Jiao, Z. and Ma, D., “Adaptive robust control of DC motors with extended state observer,” IEEE Trans. Ind. Electron. 61(7), 36303637 (2014).10.1109/TIE.2013.2281165CrossRefGoogle Scholar
Tian, G. and Gao, Z., “Benchmark Tests of Active Disturbance Rejection Control on an Industrial Motion Control Platform,” American Control Conference, St. Louis, MO, USA (IEEE, 2009) pp. 55525557.Google Scholar
Zheng, Q. and Gao, Z., “An Energy Saving, Factory-Validated Disturbance Decoupling Control Design for Extrusion Processes,” 10th World Congress on Intelligent Control and Automation (WCICA), Beijing, China (IEEE, 2012) pp 28912896.10.1109/WCICA.2012.6358364CrossRefGoogle Scholar
Kordasz, M., Madoński, R., Przybyła, M. and Sauer, P., “Active Disturbance Rejection Control for a Flexible-Joint Manipulator,” Robot Motion and Control Conference (Springer, London, 2012), pp. 247256.Google Scholar
Long, Y., Du, Z., Cong, L., Wang, W., Zhang, Z. and Dong, W., “Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton,” ISA Trans. 67, 389397 (2017).10.1016/j.isatra.2017.01.006CrossRefGoogle ScholarPubMed
Medjebouri, A. and Mehennaoui, L., “Active disturbance rejection control of a SCARA robot arm,” Int. J. u-and e-Serv., Sci. Technol. 8(1), 435446 (2015).10.14257/ijunesst.2015.8.1.38CrossRefGoogle Scholar
Sira-Ramírez, H., López-Uribe, C. and Velasco-Villa, M., “Linear observer-based active disturbance rejection control of the omnidirectional mobile robot,” Asian J. Control 15(1), 5163 (2013).10.1002/asjc.523CrossRefGoogle Scholar
Book, W. J., “Recursive Lagrangian dynamics of flexible manipulator arms,” Int. J. Rob. Res. 3(3), 87101 (1984).10.1177/027836498400300305CrossRefGoogle Scholar
Benati, M. and Morro, A., “Dynamics of chain of flexible links,” J. Dyn. Syst. Meas. Contr. 110(4), 410415 (1988).10.1115/1.3152704CrossRefGoogle Scholar
Saad, M., Akhrif, O. and Saydy, L., “Analytical model of one flexible link system with nonlinear kinematics,” J. Vib. Control 19(12), 17951806 (2013).10.1177/1077546312450307CrossRefGoogle Scholar
Guo, B.-Z. and Zhao, Z.-L., “On the convergence of an extended state observer for nonlinear systems with uncertainty,” Syst. Control Lett. 60(6), 420430 (2011).10.1016/j.sysconle.2011.03.008CrossRefGoogle Scholar
Slotine, J.-J. E. and Li, W., Applied Nonlinear Control, No. 1 (Prentice Hall, Englewood Cliffs, NJ, 1991).Google Scholar
Luca, A. D. and Siciliano, B., “Trajectory control of a non-linear one-link flexible arm,” Int. J. Control 50(5), 16991715 (1989).10.1080/00207178908953460CrossRefGoogle Scholar