Skip to main content
×
×
Home

Robust adaptive control for robot manipulators: Support vector regression-based command filtered adaptive backstepping approach

  • Joseph Jean-Baptiste Mvogo Ahanda (a1), Jean Bosco Mbede (a2), Achille Melingui (a2) and Bernard Essimbi (a1)
Summary
SUMMARY

This study derives a robust adaptive control of electrically driven robot manipulators using a support vector regression (SVR)-based command filtered adaptive backstepping approach. The robot system is supposed to be subject to model uncertainties, neglected dynamics, and external disturbances. The command filtered backstepping algorithm is extended to the case of the robot manipulators. A robust term is added to the common adaptive SVR algorithm, to mitigate the effects of the SVR approximation error in the path tracking performance. The stability analysis of the closed loop system using the Lyapunov theory permits to highlight adaptation laws and to prove that all the signals in the closed loop system are bounded. Simulations show the effectiveness of the proposed control strategy.

Copyright
Corresponding author
*Corresponding author. E-mail: josephjeanmvogo@yahoo.fr
References
Hide All
1. Li Y., Qiang S., Zhuang X. and Kaynak O., “Robust and adaptive backstepping control for nonlinear systems using RBF neural networks,” IEEE Trans. Neural Netw. 15 (3), 694701 (2004).
2. Kwan C. and Lewis F. L., “Robust backstepping control of nonlinear systems using neural networks,” IEEE Trans. Syst. Man Cybern.-Part A: Syst. Humans 30 (6), 753766 (2000).
3. Zhou J., Wen C. and Zhang Y., “Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis,” IEEE Trans. Autom. Control 49 (10), 17511759 (2004).
4. Tong S., Li Y., Li Y. and Liu Y., “Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems,” IEEE Trans. Man Cybern. Part B (Cybernetics) 41 (6), 16931704 (2011).
5. Mbede J. B. and Mvogo Ahanda J. Jean-Baptiste, “Exponential tracking control using backstepping approach for voltage-based control of a flexible joint electrically driven robot,” J. Robot., Hindawi Publ. vol. 2014, 10 pages (2014).
6. Su C.-Y. and Stepanenko Y., “Backstepping-based hybrid adaptive control of robot manipulators incorporating actuator dynamics,” Int. J. Adapt. Control Signal Process. 11 (2), 141153 (1997).
7. Oh J. H. and Lee J. S., “Control of Flexible Joint robot System by Backstepping Design Approach,” Intelligent Automation & Soft Computing, Taylor & Francis 5 (4), 267278 (1999).
8. Huang A.-C. and Chen Y.-C., “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE Trans. Control Syst. Technol. 12 (5), 770775 (2004).
9. Hwang J. P. and Kim E., “Robust tracking control of an electrically driven robot: Adaptive fuzzy logic approach,” IEEE Trans. Fuzzy Syst. 14 (2), 232247 (2006).
10. Swaroop D., Karl J., Yip P. P. and Gerdes J. C., “Dynamic surface control for a class of nonlinear systems,” IEEE Trans. Autom. Control 45 (10), 18931899 (2000).
11. Farrell J. A., Polycarpou M., Sharma M. and Dong W., “Command filtered backstepping,” IEEE Trans. Autom. Control 54 (6), 13911395 (2009).
12. Cheong J. Y., Han S. I. and Lee J. M., “Adaptive fuzzy dynamic surface sliding mode position control for a robot manipulator with friction and deadzone,” Math. Problems Eng., Hindawi Publ. vol. 2013, 15 pages (2013).
13. Yoo S. J., Park J. B. and Choi Y. Ho., “Output feedback dynamic surface control of flexible-joint robots,” Int. J. Control Autom. Syst., Korean Institute Electr. Eng. 6 (2), 223 (2008).
14. Chen J., Li Z. Zhang G. and Gan M., “Adaptive robust dynamic surface control with composite adaptation laws,” Int. J. Adapt. Control Signal Process. 24 (12), 10361050 (2010).
15. Yoo S.-J., Choi Y.-H. and Park J.-B., “A study on simple adaptive control of flexible-joint robots considering motor dynamics,” J. Inst. Control Robot. Syst. 14 (11), 11031109 (2008).
16. Yoo S. J., Park J. B. and Choi Y. H., “Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks,” IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 36 (6), 13421355 (2006).
17. Li Y., Li T. and Tong S., “Adaptive fuzzy backstepping dynamic surface control of uncertain nonlinear systems based on filter observer,” Int. J. Fuzzy Syst. 14 (12), 320329 (2012).
18. Zhang T.-P. and Ge S. S., “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica 44 (7), 18951903 (2008).
19. Zhao Q., Li Y. and Lin Y., “Adaptive nonlinear output-feedback dynamic surface control with unknown high-frequency gain sign,” Int. J. Control 86 (12), 22032214 (2013).
20. Song B., “Robust stabilization of decentralized dynamic surface control for a class of interconnected nonlinear systems,” Int. J. Control Autom. Syst. 5 (2), 138 (2007).
21. Huang A.-C. and Chen Y.-C., “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE Trans. Control Syst. Technol. 12 (5), 770775 (2004).
22. Pan Y. and Yu H., “Dynamic surface control via singular perturbation analysis,” Automatica 57, 2933 (2015).
23. Petit F., Daasch A. and Albu-Schäffer A., “Backstepping control of variable stiffness robots,” IEEE Trans. Control Syst. Technol. 23 (6), 21952202 (2015).
24. Chien M.-C. and Huang A.-C., “Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties,” IEEE Trans. Ind. Electron. 54 (2), 10321038 (2007).
25. Fateh M. M. and Khorashadizadeh S., “Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty,” Nonlinear Dyn. 69 (3), 14651477 (2012).
26. Tomei P., “Robust adaptive friction compensation for tracking control of robot manipulators,” IEEE Trans. Autom. Control 45 (11), 21642169 (2000).
27. Kwan C., Lewis F. L. and Dawson D. M., “Robust neural-network control of rigid-link electrically driven robots,” IEEE Trans. Neural Netw. 9 (4), 581588 (1998).
28. Chang Y.-C. and Yen H.-M., “Robust tracking control for a class of uncertain electrically driven robots,” IET Control Theory Appl. 3 (5), 519532 (2009).
29. He W., David A. O., Yin Z. and Sun C., “Neural network control of a robotic manipulator with input deadzone and output constraint,” IEEE Trans. Man Cybern.: Syst. 46 (6), 759770 (2016).
30. Er M. J. and Gao Y., “Robust adaptive control of robot manipulators using generalized fuzzy neural networks,” IEEE Trans. Ind. Electron. 50 (3), 620628 (2003).
31. Islam S. and Liu P. X., “Robust adaptive fuzzy output feedback control system for robot manipulators,” IEEE/ASME Trans. Mechatron. 16 (2), 288296 (2011).
32. Smola A. J. and Schölkopf B., “A tutorial on support vector regression,” Stat. Comput. 14 (3), 199222 (2004).
33. Yinan L., Shengxiu Z., Lijia C. and Chao Z., “Adaptive Backstepping Control for Nonlinear Systems Using Support Vector Regression,” In: Intelligence Computation and Evolutionary Computation. Advances in Intelligent Systems and Computing (Du Z., ed.), vol. 180 (Springer, Berlin, Heidelberg, 2013) pp. 1323.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 74 *
Loading metrics...

* Views captured on Cambridge Core between 23rd November 2017 - 17th December 2017. This data will be updated every 24 hours.