Skip to main content Accessibility help

A robust, multi-hypothesis approach to matching occupancy grid maps

  • Jose-Luis Blanco (a1), Javier González-Jiménez (a2) and Juan-Antonio Fernández-Madrigal (a2)


This paper presents a new approach to matching occupancy grid maps by means of finding correspondences between a set of sparse features detected in the maps. The problem is stated here as a special instance of generic image registration. To cope with the uncertainty and ambiguity that arise from matching grid maps, we introduce a modified RANSAC algorithm which searches for a dynamic number of internally consistent subsets of feature pairings from which to compute hypotheses about the translation and rotation between the maps. By providing a (possibly multi-modal) probability distribution of the relative pose of the maps, our method can be seamlessly integrated into large-scale mapping frameworks for mobile robots. This paper provides a benchmarking of different detectors and descriptors, along extensive experimental results that illustrate the robustness of the algorithm with a 97% success ratio in loop-closure detection for ~1700 matchings between local maps obtained from four publicly available datasets.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Bay, H., Tuytelaars, T. and Van Gool, L., “Surf: Speeded up robust features,’ Lecture Notes Comput. Sci. 3951, 404 (2006).
2.Besl, P. J. and McKay, N. D., “A method for registration of 3-D shapes,’ IEEE Trans. Pattern Anal. Mach. Intell. 14 (2), 239256 (1992).
3.Birk, A. and Carpin, S., “Merging occupancy grid maps from multiple robots,’ IEEE Proc. 94 (7), 1384 (2006).
4.Blanco, J.-L., “A tutorial on se(3) transformation parameterizations and on-manifold optimization,’ Technical report, University of Malaga (Sep. 2010).
5.Blanco, J.-L., Fernández-Madrigal, J.-A. and Gonzalez, J., “Towards a unified Bayesian approach to hybrid metric-topological SLAM,’ IEEE Trans. Robot. 24 (2), 259270 (2008).
6.Blanco, J.-L., Gonzalez, J. and Fernández-Madrigal, J.-A., “Subjective local maps for hybrid metric-topological SLAM,’ Robot. Auton. Syst. 57 (1), 6474 (2009).
7.Blanco, J.-L., González-Jiménez, J. and Fernández-Madrigal, J.-A., “An alternative to the Mahalanobis distance for determining optimal correspondences in data association,’ IEEE Trans. Robot. 28 (4) (2012).
8.Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W. and Teller, S., “An Atlas Framework for Scalable Mapping,’ In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2 (2003) pp. 18991906.
9.Davison, A. J., Reid, I., Molton, N. and Stasse, O., “MonoSLAM: Real-time single camera SLAM,’ IEEE Trans. Pattern Anal. Mach. Intell. 29 (6), 10521067 (2007).
10.Duckett, T. and Nehmzow, U., “Mobile robot self-localisation using occupancy histograms and a mixture of Gaussian location hypotheses,’ Robot. Auton. Syst. 34 (2–3), 119130 (2001).
11.Elfes, A., “Using occupancy grids for mobile robot perception and navigation,’ Computer 22 (6), 4657 (1989).
12.Estrada, C., Neira, J. and Tardos, J. D., “Hierarchical SLAM: Real-time accurate mapping of large environments,’ IEEE Trans. Robot. 21 (4), 588596 (2005).
13.Fischler, M. A. and Bolles, R. C., “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,’ Commun. ACM 24 (6), 381395 (1981).
14.Gil, A., Mozos, O. M., Ballesta, M. and Reinoso, O., “A comparative evaluation of interest point detectors and local descriptors for visual slam,’ Mach. Vision Appl. 21 (6), 905920 (2010).
15.Grisetti, G., Tipaldi, G. D., Stachniss, C., Burgard, W. and Nardi, D., “Fast and accurate SLAM with Rao-Blackwellized particle filters,’ Robot. Auton. Syst. 55 (1), 3038 (2007).
16.Gutmann, J. S. and Konolige, K., “Incremental mapping of large cyclic environments,’ In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation (1999) pp. 318–325.
17.Harris, C. and Stephens, M., “A combined corner and edge detector,’ In: Proceedings of Alvey Vision Conference, vol. 15 (1988) pp. 147151.
18.Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision (Cambridge University Press, Cambridge, 2003).
19.Hess, R., “An open-source SIFTLibrary,’ In: Proceedings of the international conference on Multimedia, (2010) pp. 1493–1496.
20.Horn, B. K. P., “Closed-form solution of absolute orientation using unit quaternions,’ J. Opt. Soc. Am. A, 4 (4), 629642 (1987).
21.Howard, A. and Roy, N., The robotics data set repository (radish) (2003). available at:
22.Lazebnik, S., Schmid, C. and Ponce, J., “A sparse texture representation using affine-invariant regions,’ In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (2003) pp. 319324.
23.Lowe, D. G., “Object recognition from local scale-invariant features,’ In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2 (1999) pp. 11501157.
24.Lucas, B. D. and Kanade, T., “An iterative image registration technique with an application to stereo vision,’ Proc. DARPA Image Understanding Workshop. 121, 130 (1981).
25.Martínez, J. L., González, J., Morales, J., Mandow, A. and García-Cerezo, A., “Mobile robot motion estimation by 2D scan matching with genetic and iterative closest point algorithms,’ J. Field Robot. 23 (Jan. 2006) pp. 2134.
26.Mikolajczyk, K. and Schmid, C., “An affine invariant interest point detector,’ In: Proceedings of European Conference on Computer Vision, vol. 1 (2002) pp. 128142.
27.Mikolajczyk, K. and Schmid, C., “A performance evaluation of local descriptors,’ IEEE Trans. Pattern Anal. Mach. Intell. 27 (10), 16151630 (2005).
28.Neira, J. and Tardós, J. D., “Data association in stochastic mapping using the joint compatibility test,’ IEEE Trans. Robot. Autom. 17 (6), 890897 (2001).
29.Nieto, J. I., Guivant, J. E. and Nebot, E. M., “The hybrid metric maps (HYMMS): A novel map representation for DenseSLAM,’ In: Proceedings of the IEEE International Conference on Robotics and Automation (2004) pp. 391–396.
30.Runnalls, A. R., “Kullback–Leibler approach to Gaussian mixture reduction,’ IEEE Trans. Aerosp. Electron. Syst. 43 (3), 989999 (2007).
31.Saeedi, P., Lawrence, P. D. and Lowe, D. G., “Vision-based 3-D trajectory tracking for unknown environments,’ IEEE Trans. Robot. 22 (1), 119136 (2006).
32.Se, S., Lowe, D. and Little, J., “Local and global localization for mobile robots using visual landmarks,’ In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (2001) pp. 414420.
33.Shekhar, C., Govindu, V. and Chellappa, R., “Multisensor image registration by feature consensus,’ Pattern Recogn. 32 (1), 3952 (1999).
34.Shi, J. and Tomasi, C., “Good features to track,’ In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1994) pp. 593–600.
35.Tamimi, H., Andreasson, H., Treptow, A., Duckett, T. and Zell, A., “Localization of mobile robots with omnidirectional vision using particle filter and iterative SIFT,’ Robot. Auton. Syst. 54, 758765 (2006).
36.Thrun, S., “Learning occupancy grid maps with forward sensor models,’ Auton. Robot. 15 (2), 111127 (2003).
37.Thrun, S., Burgard, W. and Fox, D., Probabilistic Robotics (MIT Press, Cambridge, MA (USA), 2005).
38.Zitova, B. and Flusser, J., “Image registration methods: A survey,’ Image Vis. Comput. 21 (11), 9771000 (2003).


Related content

Powered by UNSILO

A robust, multi-hypothesis approach to matching occupancy grid maps

  • Jose-Luis Blanco (a1), Javier González-Jiménez (a2) and Juan-Antonio Fernández-Madrigal (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.