Skip to main content

Robust position-based impedance control of lightweight single-link flexible robots interacting with the unknown environment via a fractional-order sliding mode controller

  • Ali Fayazi (a1), Naser Pariz (a1), Ali Karimpour (a1) and Seyed Hassan Hosseinnia (a1) (a2)

This paper presents a fractional-order sliding mode control scheme equipped with a disturbance observer for robust impedance control of a single-link flexible robot arm when it comes into contact with an unknown environment. In this research, the impedance control problem is studied for both unconstrained and constrained maneuvers. The proposed control strategy is robust with respect to the changes of the environment parameters (such as stiffness and damping coefficient), the unknown Coulomb friction disturbances, payload, and viscous friction variations. The proposed control scheme is also valid for both unconstrained and constrained motions. Our novel approach automatically switches from the free to the constrained motion mode using a simple algorithm of contact detection. In this regard, an impedance control scheme is proposed with the inner loop position control. This means that in the free motion, the applied force to the environment is zero and the reference trajectory for the inner loop position control is the desired trajectory. However, in the constrained motion the reference trajectory for the inner loop is determined by the desired impedance dynamics. Stability of the closed loop control system is proved by Lyapunov theory. Several numerical simulations are carried out to indicate the capability and the effectiveness of the proposed control scheme.

Corresponding author
*Corresponding author. E-mail:
Hide All
1. Dwivedyć, S. K. and Eberhard, P., “Dynamic analysis of flexible manipulators, a literature review,” Mech. Mach. Theory 41 (7), 749777 (2006).
2. Wangć, F. and Gao, Y., Advanced Studies of Flexible Robotic Manipulators, Modeling, Design, Control and Applications (World Scientific, New Jersey, 2003) ISBN: 978-981-279-672-1.
3. Sawodny, O., Aschemann, H. and Bulach, A., “Mechatronical Designed Control of Fire Rescue Turnable Ladders as Flexible Link Robots,” Proceedings of the IFAC 15th Triennial World Congress (2002).
4. Feliu-Talegon, D. and Feliu-Batlle, V., “Improving the position control of a two degrees of freedom robotic sensing antenna using fractional-order controllers,” Int. J. Control 90, 12561281 (2017).
5. Feliu-Batlle, V., Feliu-Talegon, D. and Castillo-Berrio, C. F., “Improved object detection using a robotic sensing antenna with vibration damping control,” Sensors 17 (4), 128 (2017).
6. Beasley, R. A. and Howe, R. D., “Model-Based Error Correction for Flexible Robotic Surgical Instruments,” In: Proceedings of the Robotics, Science and Systems I (Massachusetts Institute of Technology, Cambridge, MA, 2005).
7. Hogan, N., “Impedance control: An approach to manipulation: Part1, Part2, Part3,” J. Dyn. Syst. Meas. Control 107, 124 (1985).
8. Fateh, M. M. and Babaghasabha, R., “Impedance control of robots using voltage control strategy,” Nonlinear Dyn. 74 (1), 277286 (2013).
9. Heck, D., Saccon, A., Wouw, N. V. D. and Nijmeijer, H., “Guaranteeing stable tracking of hybrid position-force trajectories for a robot manipulator interacting with a stiff environment,” Automatica 63, 235247 (2016).
10. Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment,” IEEE Trans. Control Syst. Technol. 12 (3), 474483 (2004).
11. Lasky, T. and Hsia, T. C., “On Force-Tracking Impedance Control of Robot Manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation (1991) pp. 274–280.
12. Lee, S. and Lee, H. S., “Intelligent Control of Manipulators Interfacing with an Uncertain Environment Based on Generalized Impedance,” Proceedings of the IEEE Symposium on Intelligent Control (1991) pp. 61–66.
13. Seraji, H. and Colbaugh, R., “Force Tracking in Impedance Control,” Proceedings of the IEEE International Conference on Robotics and Automation (1993) pp. 499–506.
14. Sharifi, M., Behzadipour, S. and Vossoughi, G. R., “Nonlinear model reference adaptive impedance control for human-robot interactions,” Control Eng. Pract. 32, 927 (2014).
15. Xu, Q., “Robust impedance control of a compliant microgripper for high-speed position/force regulation,” IEEE Trans. Ind. Electron. 62 (2), 12011209 (2015).
16. Castillo-Berrio, C. F. and Feliu-Batlle, V., “Vibration-free position control for a two degrees of freedom flexible-beam sensor,” IEEE Trans. Ind. Electron. 27, 112 (2015).
17. Castillo-Berrio, C. F., Engin, S. N. and Feliu-Batlle, V., “A study on the tip tracking control of a single flexible beam,” Trans. Inst. Meas. Control 38 (5), 602617 (2017).
18. Mamani, G., Besedas, J. and Feliu, V., “Sliding mode tracking control of a very lightweight single-link flexible robot robust to payload changes and motor Friction,” J. Vib. Control 18 (8), 11411155 (2012).
19. Payo, I., Feliu, V. and Cortazar, O. D., “Force control of a very lightweight single-link flexible arm based on coupling torque feedback,” Mechatronics 19 (3), 334347 (2009).
20. Vossoughi, G. R. and Karimzadeh, A., “Impedance control of a flexible link robot for constrained and unconstrained maneuvers using sliding mode control (SMC) method,” Sci. Iran. 14 (1), 3345 (2007).
21. Wongratanaphisan, T. and Cole, M. O. T., “Robust impedance control of a flexible structure mounted manipulator performing contact tasks,” IEEE Trans. Robot. 25 (2), 445451 (2009).
22. Jiang, Z. H., “Impedance control of flexible robot arms with parametric uncertainties,” J. Intell. Robot. Syst. 42 (2), 113133 (2005).
23. Benosman, A. and Vey, G. L., “Control of flexible manipulators: A survey,” Robotica 22 (5), 533545 (2004).
24. Marinangeli, L., Alijani, F. and HosseinNia, S. H., “A fractional-order positive position feedback compensator for active vibration control,” IFAC-PapersOnLine 50 (1), 1280912816 (2017).
25. Marinangeli, L., Alijani, F. and HosseinNia, S. H., “Fractional-order positive position feedback compensator for active vibration control of a smart composite plate,” J. Sound Vib. 412, 116 (2018).
26. HosseinNia, S. H., Tejado, Inés., Torres, D. and Vinagre, B. M., “Vibration Suppression Controller for a Flexible Beam on a Cart using SMC,” Proceedings of the 1st Iberian Robotics Conference (2014) pp. 127–139.
27. Chen, Y., Xue, D. and Dou, H., “Fractional Calculus and Biomimetic Control,” Proceedings of the IEEE International Conference on Robotics and Biomimetics (2004) pp. 901–906.
28. Chun, Y., YangQuan, C. and Shou-ming, Z., “Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems,” Automatica 50 (12), 31733181 (2014).
29. Zhang, D., Cao, L. and Tang, S., “Fractional-order sliding mode control for a class of uncertain nonlinear systems based on LQR,” Int. J. Adv. Robot. Syst. 14 (2), 115 (2017).
30. Efe, M. O., “Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm,” IEEE Trans. Syst., Man, Cybern., Part B (Cybern.) 38 (6), 15611570 (2008).
31. Fayazi, A. and Nabizadeh-Rafsanjani, H., “Fractional Order Fuzzy Sliding Mode Controller for Robotic Flexible Joint Manipulators,” Proceedings of the IEEE International Conference on Control and Automation (2011) pp. 1244–1249.
32. Fonseca Ferreira, N. M. and Machado, J. A. Tenreiro, “Fractional-Order Hybrid Control of Robotic Manipulators,” Proceedings of the 11th International Conference on Advanced Robotics (2003) pp. 393–398.
33. Ghasemi, I., Ranjbar-Noei, A. and Sadati, J., “Sliding mode based fractional-order iterative learning control for a nonlinear robot manipulator with bounded disturbance,” Trans. Inst. Meas. Control 38, 112 (2016).
34. Heng, L., Yongping, P., Shenggang, L. and Chen, Y. E., “Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control,” Int. J. Mach. Learn. Cybern. 8, 114 (2017).
35. HosseinNia, S. H., Ghaderi, R., Mahmoudian, M. and Momani, S., “Sliding mode synchronization of an uncertain fractional order chaotic system,” Comput. Math. Appl. 59 (5), 16371643 (2010).
36. HosseinNia, S. H., Tejado, Inés. and Vinagre, B. M., “Fractional-order reset control: Application to a servomotor,” Mechatronics 23 (7), 781788 (2013).
37. HosseinNia, S. H., Tejado, Inés., Milanés, V., Villagr, J. and Vinagre, B. M., “Experimental application of hybrid fractional-order adaptive cruise control at low speed,” IEEE Trans. Control Syst. Technol. 22 (6), 23292336 (2014).
38. Krijnen, M. E., van-Ostayen, R. A. and HosseinNia, S. H., “The application of fractional order control for an air-based contactless actuation system,” ISA Trans. (2017) doi: 10.1016/j.isatra.2017.04.014.
39. Ma, C. and Hori, Y., “Fractional-order control: Theory and applications in motion control,” IEEE Ind. Electron. Mag. 1 (4), 616 (2007).
40. Tejado, I., HosseinNia, S. H. and Vinagre, B. M., “Adaptive gain-order fractional control for network-based applications,” Fractional Calculus Appl. Anal. 17 (2), 462482 (2014).
41. Bayo, E., “A finite-element approach to control the end-point motion of a single-link flexible robot,” J. Robot. Syst. 4 (1), 6375 (1987).
42. Feliu, V., Rattan, K. and Brown, N., “Modeling and control of single-link flexible arms with lumped masses,” J. Dyn. Syst. Meas. Control 114 (1), 5969 (1992).
43. Cannon, R. H. and Schmitz, E., “Initial experiments on the end-point control of a flexible robot,” Int. J. Robot. Res. 3 (3), 6275 (1984).
44. Payo, I., Ramos, F., Cortazar, O. D. and Feliu, V., “Experimental Validation of Nonlinear Dynamic Models for Single-Link Very Flexible Arms,” Proceedings of the IEEE Conference on Decision and Control, and the European Control Conference (2005) pp. 5304–5309.
45. HosseinNia, S. H., Tejado, Inés., Vinagre, B. M. and Sierociuk, D., “Boolean-based fractional order SMC for switching systems: Application to a DC-DC buck converter,” Signal, Image Video Process. 6 (3), 445451 (2012).
46. Calderon, A., Vinagre, B. and Feliu, V., “Fractional order control strategies for power electronic buck converters,” Signal Process. 86 (10), 28032819 (2006).
47. Chen, W. H., “Nonlinear disturbance observer-enhanced dynamic inversion control of missiles,” J. Guid., Control Dyn. 26 (1), 161166 (2003).
48. Deshpande, V. S., Mohan, B., Shendge, P. D. and Phadke, S. B., “Disturbance observer based sliding mode control of active suspension systems,” J. Sound Vib. 333 (11), 22812296 (2014).
49. Corless, M. and Leitman, G., “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Trans. Autom. Control 26 (5), 11391144 (1981).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 58 *
Loading metrics...

* Views captured on Cambridge Core between 7th September 2018 - 23rd September 2018. This data will be updated every 24 hours.